我们可以根据教案调整课堂的教学节奏,教案应当引导学生参与课堂互动,促进合作学习,团团范文网 小编今天就为您带来了数学七年级上教案优秀7篇,相信一定会对你有所帮助。
数学七年级上教案篇1
一、教学目标
(一)教学目标
1、了解平方差公式的几何背景。
2、会用面积法推导平方差公式,并能运用公式进行简单的运算。
3、体会符号运算对证明猜想的作用。
(二)能力目标
1、用符号运算证明猜想,提高解决问题的能力。
2、培养学生观察、归纳、概括等能力。
(三)情感目标
1、在拼图游戏中对平方差公式有一个直观的几何解释,体验学习数学的乐趣。
2、体验符号运算对猜想的作用,享受数学符号表示运算规律的简捷美。
二、教学重难点
(一)教学重点
平方差公式的几何解释和广泛的应用。
(二)教学难点
准确地运用平方差公式进行简单运算,培养基本的运算技能。
三、教具准备
一块大正方形纸板,剪刀。
投影片四张
第一张:想一想,记作(1.7.2 a)
第二张:例3,记作(1.7.2 b)
第三张:例4,记作(1.7.2 c)
第四张:补充练习,记作(1.7.2 d)
四、教学过程
Ⅰ。创设问题情景,引入新课
[师]同学们,请把自己准备好的正方形纸板拿出来,设它的边长为a.
这个正方形的面积是多少?
[生]a2.
[师]请你用手中的剪刀从这个正方形纸板上,剪下一个边长为b的小正方形(如图1-23)。现在我们就有了一个新的图形(如上图阴影部分),你能表示出阴影部分的面积吗?
[生]剪去一个边长为b的小正方形,余下图形的面积,即阴影部分的面积为(a2-b2)。
[师]你能用阴影部分的图形拼成一个长方形吗?同学们可在小组内交流讨论。
(教师可巡视同学们拼图的情况,了解同学们拼图的想法)
数学七年级上教案篇2
教学目标:
知识能力:理解有理数的概念,掌握有理数的两种分类方法,能够按要求对给定的有理数进行分类。
过程与方法:通过本节的学习,培养学生正确的分类讨论观点和分类能力。
情感、态度、价值观:通过本节课的学习,体验成功的'喜悦,保持学好数学的信心。
教学重点:
掌握有理数的两种分类方法
教学难点:
给定的数字将被填入它所属的集合中
教学方法:
问题导向法
学习方法:
自主探究法
教学过程:
一、形势归纳
小学我们学了整数和分数,上节课我们学了正数和负数。谁能快速提出以下问题?
1、有以下数字:15,—1/9,—5,2/15,—13/8,0.1,—5.22,—80,0,123,2.33
(1)将以上数字填入以下两组:正整数集{}和负整数集{}。你填完了吗?
(2)将以上数字填入以下两个集合:整数集合{}和分数集合{}。你填完了吗?
称整数和分数为有理数。(指点题,板书)
二、自学指导
学生自学课本,根据课本寻找自学的机会
提纲中问题的答案;老师先做必要的板书准备,再到学生中巡视指导,并了解掌握学生自学情况,为展示归纳作准备。
三、展示归纳
1、找有问题的学生逐题展示自学提纲中的问题答案,学生说,老师板书;
2、发动学生进行评价、补充、完善,教师根据每个题目的展示情况进行必要的讲解和强调;
3、全部展示完毕后,老师对本段知识做系统梳理,关键点予以强调。
四、变式练习
逐题出示,先让学生独立完成,再请有问题的学生汇报结果,老师板书,并发动其他学生评价、补充并完善,最后老师根据需要进行重点强调。
五、总结与反思:通过本节课的学习,你有什么收获?
六、作业:必做题:课本14页:1、9题
数学七年级上教案篇3
一.回顾知识点
1、主要知识回顾:
幂的运算性质:
aman=am+n(m、n为正整数)
同底数幂相乘,底数不变,指数相加.
=amn(m、n为正整数)
幂的乘方,底数不变,指数相乘.
(n为正整数)
积的乘方等于各因式乘方的积.
=am-n(a≠0,m、n都是正整数,且m>n)
同底数幂相除,底数不变,指数相减.
零指数幂的概念:
a0=1(a≠0)
任何一个不等于零的数的零指数幂都等于l.
负指数幂的概念:
a-p=(a≠0,p是正整数)
任何一个不等于零的数的-p(p是正整数)指数幂,等于这个数的p指数幂的倒数.
也可表示为:(m≠0,n≠0,p为正整数)
单项式的乘法法则:
单项式相乘,把系数、同底数幂分别相乘,作为积的因式;对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.
单项式与多项式的乘法法则:
单项式与多项式相乘,用单项式和多项式的每一项分别相乘,再把所得的积相加.
多项式与多项式的乘法法则:
多项式与多项式相乘,先用一个多项式的每一项与另一个多项式的每一项相乘,再把所得的积相加.
单项式的除法法则:
单项式相除,把系数、同底数幂分别相除,作为商的因式:对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.
多项式除以单项式的法则:
多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加.
2、乘法公式:
①平方差公式:(a+b)(a-b)=a2-b2
文字语言叙述:两个数的和与这两个数的差相乘,等于这两个数的平方差.
②完全平方公式:(a+b)2=a2+2ab+b2
(a-b)2=a2-2ab+b2
文字语言叙述:两个数的和(或差)的平方等于这两个数的平方和加上(或减去)这两个数的积的2倍.
3、因式分解:
因式分解的定义.
把一个多项式化成几个整式的乘积的形式,这种变形叫做把这个多项式因式分解.
掌握其定义应注意以下几点:
(1)分解对象是多项式,分解结果必须是积的形式,且积的因式必须是整式,这三个要素缺一不可;
(2)因式分解必须是恒等变形;
(3)因式分解必须分解到每个因式都不能分解为止.
弄清因式分解与整式乘法的内在的关系.
因式分解与整式乘法是互逆变形,因式分解是把和差化为积的形式,而整式乘法是把积化为和差的形式.
二、熟练掌握因式分解的常用方法.
1、提公因式法
(1)掌握提公因式法的概念;
(2)提公因式法的关键是找出公因式,公因式的构成一般情况下有三部分:
①系数一各项系数的最大公约数;
②字母——各项含有的相同字母;③指数——相同字母的最低次数;
(3)提公因式法的步骤:第一步是找出公因式;第二步是提取公因式并确定另一因式.需注意的是,提取完公因式后,另一个因式的项数与原多项式的项数一致,这一点可用来检验是否漏项.
(4)注意点:
①提取公因式后各因式应该是最简形式,即分解到“底”;
②如果多项式的第一项的系数是负的,一般要提出“-”号,使括号内的第一项的系数是正的.
2、公式法
运用公式法分解因式的实质是把整式中的乘法公式反过来使用;
常用的公式:
①平方差公式:a2-b2=(a+b)(a-b)
②完全平方公式:a2+2ab+b2=(a+b)2
a2-2ab+b2=(a-b)2
数学七年级上教案篇4
学习目标:
1、引导学生正确区分“线段、射线、直线”,掌握其表示方法,理解并能运用相关性质、公理。
2、了解线段中点的概念,能借助刻度尺、圆规等画图工具画一条线段等于已知线段。
3、引领学生在感受美妙多变的图形世界中,培养他们的观察、分析、比较、探究等能力。
重点与难点:了解线段中点的概念,能画一条线段等于已知线段。发展学生有条理的思考,并能正确地表述。
学习过程:
一、课前预习导学
1、如图,点a、b、c、d在直线ab上,则图中能用字母表示的共有条线段,有条射线,有条直线。
2、从a到b地有①、②、③三条路可以走,每条路长分别为:,则第条路最短,另两条路的长短关系是。
第1题
第2题
3、如图,若是中点,是中点,
(1)若,_________;
(2)若,_________。
二、课堂学习1、议一议:
(1)、在平面内画一个点,过这个点画直线,能画多少条?
(2)、要在墙上钉牢一根木条,至少要用几个钉子?为什么?
(3)、如果平面内有两个点,过这两个点画直线,又能画多少条?
总结:“过两点有______,并且____ ”
思考:过平面上三点中的每两点画直线,可画多少条?
2、做一做:已知两点a、b
(1)画线段ab(连接ab)
(2)延长线段ab到点c,使bc=ab
注意:我们把上图中的点b叫做线段ac的。
3、想一想:(1)如果点b是线段ac的中点,那么线段ab、bc、ac之间有怎样的数量关系?与同学交流。
(2)如何用符号语言表述中点的概念?
总结:如果点b是线段ac的中点,那么;
如果,那么b是线段ac的中点。
4、知识运用:
例1、如图,线段ab=8cm,c是ab的中点,点d在cb上,db=1.5cm.求线段cd的长度。
练习:1、如图ab=8cm,点c是ab的中点,
点d是cb的中点,则ad=____cm
2、如图,下列说法,不能判断点c是线段ab的中点的是( )
a、ac=cb b、ab=2ac c、ac+cb=ab d、cb=0.5ab
3、已知线段ab=8cm,点c是线段ab上任意一点,点m,n分别是线段ac与线段bc的中点,求线段mn的长。
三、课堂检测1.下列说法中,正确的'是()
a.射线oa和射线ao表示同一条射线;b.延长直线ab;
c.经过两点有一条直线,并且只有一条直线;d.如果ac=bc,那么点c是线段ab的中点.
2.如果要在墙上固定一根木条,你认为至少要钉子()
a.1根b.2根c.3根d.4根
3.如图,若是中点,是中点,
(1)若,,_________;(2)若,_________。
4.如图在平面内有a、b、c、d四点,按要求画图。
(1)画直线ab、射线bc、线段bd
(2)连结ac交bd于点o
(3)画射线cd并反向延长射线cd,
(4)连结ad并延长至点e,使ad=de。
四、课后作业
1、下列说法中正确的是()
a、连结两点的线段叫做两点之间的距离b、直线没有端点,射线至少有一个端点
c、经过平面内两点有且只有一条直线d、运动场上的300m赛跑,表示起点和终点之间的距离是300米
2、如图,b是线段ad上一点,c是线段bd的中点,ad=10,bc=3,求线段cd、ab的长度
3、如图,线段ad=8,ab=cd=3,e、f分别是ab、cd的中点,求线段ef的长。
4、已知线段mn=7,点p在直线mn上,且mp=3,则np= 。
5、一条直线上有a,b,c三点,其中ab=4cm,bc=3cm,若o是线段ac的中点,求线段ob的长度。
数学七年级上教案篇5
平行线的判定(1)
课型:新课: 备课人:韩贺敏 审核人:霍红超
学习目标
1.经历观察、操作、想像、推理、交流等活动,进一步发展推理能力和有条理表达能力.
2.掌握直线平行的条件,领悟归纳和转化的数学思想
学习重难点:探索并掌握直线平行的条件是本课的重点也是难点.
一、探索直线平行的条件
平行线的判定方法1:
二、练一练1、判断题
1.两条直线被第三条直线所截,如果同位角相等,那么内错角也相等.( )
2.两条直线被第三条直线所截,如果内错角互补,那么同旁内角相等.( )
2、填空1.如图1,如果∠3=∠7,或______,那么______,理由是__________;如果∠5=∠3,或笔________,那么________, 理由是______________; 如果∠2+ ∠5= ______ 或者_______,那么a∥b,理由是__________.
(2)
(3)
2.如图2,若∠2=∠6,则______∥_______,如果∠3+∠4+∠5+∠6=180°, 那么____∥_______,如果∠9=_____,那么ad∥bc;如果∠9=_____,那么ab∥cd.
三、选择题
1.如图3所示,下列条件中,不能判定ab∥cd的是( )
a.ab∥ef,cd∥ef b.∠5=∠a; c.∠abc+∠bcd=180° d.∠2=∠3
2.右图,由图和已知条件,下列判断中正确的是( )
a.由∠1=∠6,得ab∥fg;
b.由∠1+∠2=∠6+∠7,得ce∥ei
c.由∠1+∠2+∠3+∠5=180°,得ce∥fi;
d.由∠5=∠4,得ab∥fg
四、已知直线a、b被直线c所截,且∠1+∠2=180°,试判断直线a、b的位置关系,并说明理由.
五、作业课本15页-16页练习的1、2、3、
5.2.2平行线的`判定(2)
课型:新课: 备课人:韩贺敏 审核人:霍红超
学习目标
1.经历观察、操作、想像、推理、交流等活动,进一步发展空
间观念,推理能力和有条理表达能力.
毛2.分析题意说理过程,能灵活地选用直线平行的方法进行说理.
学习重点:直线平行的条件的应用.
学习难点:选取适当判定直线平行的方法进行说理是重点也是难点.
一、学习过程
平行线的判定方法有几种?分别是什么?
二.巩固练习:
1.如图2,若∠2=∠6,则______∥_______,如果∠3+∠4+∠5+∠6=180°, 那么____∥_______,如果∠9=_____,那么ad∥bc;如果∠9=_____,那么ab∥cd.
(第1题) (第2题)
2.如图,一个合格的变形管道abcd需要ab边与cd边平行,若一个拐角∠abc=72°,则另一个拐角∠bcd=_______时,这个管道符合要求.
二、选择题.
1.如图,下列判断不正确的是( )
a.因为∠1=∠4,所以de∥ab
b.因为∠2=∠3,所以ab∥ec
c.因为∠5=∠a,所以ab∥de
d.因为∠ade+∠bed=180°,所以ad∥be
2.如图,直线ab、cd被直线ef所截,使∠1=∠2≠90°,则( )
a.∠2=∠4 b.∠1=∠4 c.∠2=∠3 d.∠3=∠4
三、解答题.
1.你能用一张不规则的纸(比如,如图1所示的四边形的纸)折出两条平行的直线吗?与同伴说说你的折法.
2.已知,如图2,点b在ac上,bd⊥be,∠1+∠c=90°,问射线cf与bd平行吗?试用两种方法说明理由.
数学七年级上教案篇6
教学目标
1,整理前两个学段学过的整数、分数(包括小数)的知识,掌握正数和负数的概念;
2,能区分两种不同意义的量,会用符号表示正数和负数;
3,体验数学发展的一个重要原因是生活实际的需要,激发学生学习数学的兴趣。
教学难点正确区分两种不同意义的量。
知识重点两种相反意义的量
教学过程(师生活动)设计理念
设置情境
引入课题上课开始时,教师应通过具体的例子,简要说明在前两个学段我们已经学过的数,并由此请学生思考:生
活中仅有这些“以前学过的数”够用了吗?下面的例子
仅供参考.
师:今天我们已经是七年级的学生了,我是你们的数学老师.下面我先向你们做一下自我介绍,我的名字是xx,身高1。73米,体重58。5千克,今年40岁.我们的班级是七(13)班,有60个同学,其中男同学有22个,占全班总人数的37%…
问题1:老师刚才的介绍中出现了几个数?分别是什么?你能将这些数按以前学过的数的分类方法进行分类吗?
学生活动:思考,交流
师:以前学过的数,实际上主要有两大类,分别是整数和分数(包括小数).
问题2:在生活中,仅有整数和分数够用了吗?
请同学们看书(观察本节前面的几幅图中用到了什么数,让学生感受引入负数的必要性)并思考讨论,然后进行交流。
(也可以出示气象预报中的气温图,地图中表示地形高低地形图,工资卡中存取钱的记录页面等)
学生交流后,教师归纳:以前学过的数已经不够用了,有时候需要一种前面带有“-”的新数。先回顾小学里学过的数的类型,归纳出我们已经学了整数和分数,然后,举一些实际生活中共有相反意义的量,说明为了表示相反意义的量,我们需要引入负数,这样做强调了数学的严密性,但对于学生来说,更多地感到了数学的枯燥乏味为了既复习小学里学过的数,又能激发学生的学习兴趣,所以创设如下的问题情境,以尽量贴近学生的实际.
这个问题能激发学生探究的欲望,学生自己看书学习是培养学生自主学习的重要途径,都应予以重视。
以上的情境和实例使学生体会生活中处处有数学,通过实例,使学生获取大量的感性材料,为正确建立相反意义的量奠定基础。
分析问题
探究新知问题3:前面带有“一”号的新数我们应怎样命名它呢?为什么要引人负数呢?通常在日常生活中我们用正数和负数分别表示怎样的量呢?
这些问题都必须要求学生理解.
教师可以用多媒体出示这些问题,让学生带着这些问题看书自学,然后师生交流.
这阶段主要是让学生学会正数和负数的表示.
强调:用正,负数表示实际问题中具有相反意义的量,而相反意义的量包含两个要素:一是它们的意义相反,如向东与向西,收人与支出;二是它们都是数量,而且是同类的量.这些问题是这节课的主要知识,教师要清楚地向学生说明,并且要注意语言的准确与规范,要舍得花时间让学充分发表想法。
举一反三思维拓展经过上面的讨论交流,学生对为什么要引人负数,对怎样用正数和负数表示两种相反意义的量有了初步的理解,教师可以要求学生举出实际生活中类似的例子,以加深对正数和负数概念的理解,并开拓思维.
问题4:请同学们举出用正数和负数表示的例子.
问题5:你是怎样理解“正整数”“负整数,,’’正分数”和“负分数”的呢?请举例说明.
能否举出例子是学生对知识掌握程度的体现,也能进一步帮助学生理解引负数的必要性
课堂练习教科书第5页练习
小结与作业
课堂小结围绕下面两点,以师生共同交流的方式进行:
1,0由于实际问题中存在着相反意义的量,所以要引人负数,这样数的范围就扩大了;
2,正数就是以前学过的0以外的数(或在其前面加“+”),负数就是在以前学过的0以外的数前面加“-”。
本课作业教科书第7页习题1。1第1,2,4,5(第3题作为下节课的思考题。
作业可设必做题和选做题,体现要求的层次性,以满足不同学生的需要
本课教育评注(课堂设计理念,实际教学效果及改进设想)
密切联系生活实际,创设学习情境.本课是有理数的第一节课时.引人负数是数的范围的一次重要扩充,学生头脑中关于数的结构要做重大调整(其实是一次知识的顺应过程),而负数相对于以前的数,对学生来说显得更抽象,因此,这个概念并不是一下就能建立的.为了接受这个新的数,就必须对原有的数的结构进行整理,引人币的举例就是这个目的.
负数的产生主要是因为原有的数不够用了(不能正确简洁地表示数量),书本的例子
或图片中出现的负数就是让学生去感受和体验这一点.使学生接受生活生产实际中确实
存在着两种相反意义的量是本课的教学难点,所以在教学中可以多举几个这方面的例
子,并且所举的例子又应该符合学生的年龄和思维特点。当学生接受了这个事实后,引入负数(为了区分这两种相反意义的量)就是顺理成章的事了.
这个教学设计突出了数学与实际生活的紧密联系,使学生体会到数学的应用价值,
体现了学生自主学习、合作交流的教学理念,书本中的图片和例子都是生活生产中常见
的事实,学生容易接受,所以应该让学生自己看书、学习,并且鼓励学生讨论交流,教师作适当引导就可以了。
数学七年级上教案篇7
第一章 一元一次不等式组
1.1 一元一次不等式组
第1教案
教学目标
1. 能结合实例,了解一元一次不等式组的相关概念。
2. 让学生在探索活动中体会化陌生为熟悉,化复杂为简单的“转化”思想方法。
3. 提高分析问题的能力,增强数学应用意识,体会数学应用价值。
教学重、难点
1..不等式组的解集的概念。
2.根据实际问题列不等式组。
教学方法
探索方法,合作交流。
教学过程
一、 引入课题:
1. 估计自己的`体重不低于多少千克?不超过多少千克?若没体重为x千克,列出两个不等式。
2. 由许多问题受到多种条件的限制引入本章。
二、 探索新知:
自主探索、解决第2页“动脑筋”中的问题,完成书中填空。
分别解出两个不等式。
把两个不等式解集在同一数轴上表示出来。
找出本题的答案。
三、 抽象:
教师举例说出什么是一元一次不等式组。什么是一元一次不等式组的解集。(渗透交集思想)