小数的近似数教案5篇

时间:2023-08-24 作者:Mute

教案是教师引导课程的有力工具之一,教案的灵活调整可以根据学生的反馈和表现来进行,团团范文网 小编今天就为您带来了小数的近似数教案5篇,相信一定会对你有所帮助。

小数的近似数教案5篇

小数的近似数教案篇1

设计说明

学生在之前学习过求整数的近似数,已经掌握了基本的学习经验。因此,在本节课的教学设计上注重体现以下几点:

1.创设生活情境,感受数学与实际生活的联系。

?数学课程标准》中指出:数学源于生活又服务于生活。据此,在教学时,结合教材例1创设的豆豆测身高的情境引入新课,使学生体会到小数在生活中的广泛应用。这样就把求一个小数的近似数的知识还原于生活,应用于生活,让学生感受到数学与实际生活的紧密联系。

2.注重类推,让学生经历知识迁移的过程。

求小数的近似数的方法与求整数的近似数的方法相同,学生对用“四舍五入”法求近似数有了一定的.理解和掌握。在此基础上,让学生把学过的求整数的近似数的方法迁移类推到求小数的近似数上去,实现知识的良好迁移,使学生掌握迁移、类推的学习方法。

3.注重引导,让学生在探究中学习。

在教学求小数近似数的过程中,我充分放手,先引导学生在小组合作学习、讨论交流的基础上理解保留几位小数的意义,再引导学生探究如何求一个小数的近似数,最后引导学生总结归纳出求小数近似数的方法。

课前准备

教师准备 多媒体课件 卡片

教学过程

⊙复习导入

1.复习旧知。

(1)把下面各数省略“万”位后面的尾数,求出它们的近似数。(课件出示)

986534 58741 31200

50047 398010 14870

(2)下面的□里可以填哪些数字?

32□645≈32万 47□905≈47万

学生填完后,引导学生说一说是怎么想的。

2.导入新课。

师:我们学过求一个整数的近似数。在实际应用小数时,往往没有必要说出它的准确数,只要说出它的近似数就可以了。那么如何求一个小数的近似数呢?今天我们就来学习这一内容。(板书课题)

设计意图:借助复习求整数的近似数引入新的学习内容,使学生能更好地理解求一个小数的近似数的方法,由旧知迁移到新知,既激发了学生的求知欲,又为新知的探究做好铺垫。

⊙探究新知

1.课件出示教材例1情境图。

从图中你获得了哪些数学信息?

(豆豆的身高是0.984 m)

2.探究求近似数的方法。

(1)豆豆的身高是0.984 m。说明已经精确到了毫米,平常不需要说得这么精确,那我们一般怎么描述豆豆的身高呢?(出示课堂活动卡,组织学生讨论交流,然后指名汇报。学生的回答可能有两种情况:①豆豆的身高约是0.98 m;②豆豆的身高约是1 m)

(2)你是怎样得出豆豆身高的近似数的?

生1:我用“四舍五入”法把0.984保留两位小数。因为在生活中,表示身高的米数通常是两位小数,也就是精确到厘米。把0.984保留两位小数就要看千分位上的数,千分位上的数不满5,舍去,求得近似数是0.98。

生2:我用“四舍五入”法把0.984保留整数。保留整数就要看十分位上的数,十分位上的数是9,满5,向前一位进1,求得近似数是1。

教师小结:求一个小数的近似数与求一个整数的近似数相同,也是根据“四舍五入”法保留一定的位数。

教师板书: 0.984≈0.98

小于5,舍去

(3)如果要保留一位小数,应该怎么做呢?(组织学生小组内讨论、交流,然后汇报:0.984保留一位小数就要看百分位上的数,百分位上的数是8,满5,向十分位进1。十分位上本来是9,进1后满10,向个位进1,求得近似数是1.0)

教师板书:0.984≈1.0

大于5,向前一位进1

小数的近似数教案篇2

【教学目标】

1、使学生会用“四舍五入”法保留一定的小数位数,求出小数的近似数,将不是整万或整亿的数改写成用“万”或“亿”单位的数。

2、通过学生自主探索、合作交流,培养学生的探索能力。

【教学重点】

使学生掌握求一个小数的近似数的方法。

【教学难点】

使学生准确、熟练地应用“四舍五入”法求一个小数的近似数。

【教具】

多媒体课件

【教学过程】:

一、课前预习

1、怎样用“四舍五入”法求出一位小数的近似数?

2、怎样将不是整万或整亿的数改写成用“万”或“亿”作单位的数?

二、展示交流

(一)创设情境,引入新知

课件出示豆豆,看看小豆豆的身高是多少呢?

今天下午我们就来研究求一个小数的近似数。

(二)求小数的近似数的方法

1、同学们还刻求整数的近似数的'方法吗?我们可不可以用“四舍五入”法来求小数的近似数呢?

2、探究新知

(1)同桌讨论回忆什么是“四舍五入”法?

(2)讨论尝试

①那么求一个小数的近似数,我们也可以根据需要用“四舍五入”法省略十分位、百分位、千分位后面的数。

②出示例1,讨论求0。984的近似数

③保留一位小数时,末尾的“0”为什么应该写呢?

(3)总结归纳。求一个数的近似数,保留不同的位数,求得的近似数不同。保留小数位数越多,这个近似数就越接近准确数,也就是更精确。

(三)将不是整万或整亿数改写成用“万”或“亿”作单位的数

1、出示教材第74页例2

①讨论:通过课件图片中的数学信息,我们怎样表示这些数的读写会比较方便呢?

②结论:改写成用“亿”或“万”作单位的数。

2、从算理入手,理解改写方法。

①讨论:怎样改写呢?

②结论:改写时在万位后面点上小数点,写上“万”字,并去掉小数末尾的0就可以了。改写成以“亿”作单位同上。

三、检测反馈

1、教材第74页上、下的“做一做”。

2、教材第75页练习十二第一、2题。第3、4题

四、板书设计教

求一个数的近似数

四舍五入

保留两位小数0.984≈0.98 142800千米=14.28万千米

保留一位小数0.984≈1.0 778330000千米=7.7833亿千米

≈7.8亿千米

保留整数0.984≈1

注意:在表示近似数时,小数末尾的0不能去掉

教学反思:

现代课堂理念提倡师生互动、生生互动、学生思维的灵动、学生智慧的碰撞,而在自己的课堂中就缺失了这些,那么导致课堂氛围是平淡无味的,学生心底潜在的积极热情没有调动起来,虽然学生也在发言、讨论、交流,但是每个孩子的情感体验不是真正愉悦的。造成这样课堂效果的原因还是因为自己对于整个课堂的把控不够巧妙,刻意的在完成自己设计好的教学,没有和孩子们融合。

小数的近似数教案篇3

教学内容:求一个小数的近似数--教材第105-106页例1,做一做题目及练习二十四1-3题。

教学目的:使学生初步学会根据要求用四舍五入法保留一定的小数位数,求出小数的近似数。培养学生综合运用知识的能力。

教学重、难点:求一个小数的近似数及把较大数改写成以万或亿作单位的小数是教学重点。把较大数改写成以万或亿作单位的小数,容易丢掉计数单位或单位名称,求近似数与改写求准确数容易混淆,这是学习的难点。

教学过程:

一、复习

先省略万后面的尾数,求出近似数,再省略千后面的尾数,求出近似数。

1295356089020114536697010

二、新课

教师:我们已经学过求一个整数的近似数(或近似值)。在实际使用小数的时候,有时也没有必要说出它的准确数,只要说出它的近似数就够了,例如,量得大新的身高是1.625米,平常不需要说得那么精确,只说大约1.6米或1.63米。

我们已经会求一个整数的近似数,求一个小数的近似数的方法,同求整数的近似数的方法相似,是根据需要用四舍五入法保留一定的小数位数。

教师用投影片(或小黑板)出示例1的第1小题:2.953保留两位小数,它的近似数是多少?

教师:2.953保留两位小数,就是要省略哪一位后面的尾数?(省略百分位后面的尾数。)

省略百分位后面的尾数,要看哪一位上的数?(要看千分位上的数。)

接下来用四舍五入法怎样做?(因为千分位上的数3不满5,把它舍去。)

教师板书:2.9532.95

教师:谁能连贯地把做这题的过程说一说。

指名让学生说一说,然后教师总结:

做这题时要想:要保留两位小数,就要省略百分位后面的尾数。千分位上不满5,直接舍去。

教师用投影片(或小黑板)出示例1的第2小题:2.953保留一位小数,它的近似数是多少?

教师:2.953保留一位小数,就是要省略哪一位后面的尾数?(省略十分位后面的尾数。)

省略十分位后面的尾数,要看哪一位上的数?(要看百分位上的数。)

用四舍五入法怎样做呢?(因为百分位上的数满5,省略百分位和千分位上的数后,要向十分位进1。)

2.9加上进上来的1就是3.0。所以2.9533.0。

教师板书:2.9533.0

教师强调:这题的要求是保留一位小数,所以小数末尾的0不能去掉。

教师:谁能连贯地把做这题的过程说一说。

指名让学生说一说,然后教师总结:

做这题时要想:要保留一位小数,就是省略十分位后面的尾数。百分位上满5,省略尾数后,向十分位进1,末尾的0不能去掉。

教师用投影片出示例1的第3小题:2.953保留整数,它的近似数是多少?

教师板书:2.953

教师:谁能做出这题并且说一说应该怎样做?

指名让学生做这题,并且说一说是怎样做的。

根据学生的发言,教师板书:2.9533,并且总结:做这题时要想;要保留整数,就要省略整数后面的尾数。十分位上满5,省略尾数后向个位进1,所以2.9533。

教师:观察上面三道题,是同一个小数保留两位小数,保留一位小数和保留整数。每一次求出的近似数的精确度是不同的。保留整数,表示精确到个位;那么保留一位小数,表示精确到什么位?(十分位。)保留两位小数呢?(表示精确到百分位。)

指名学生回答上述问题。条件较好的班,教师可以接着讲一讲关于精确度的问题。讲法可以如下:

教师:那么,上面的三个近似数哪一个更精确一些呢?我们现在证明一下。如果2.953表示的是测量一段绳子的长度得到的结果:2.953米。

教师用投影片(或小黑板)出示图如下:

教师:2.953保留两位小数时,是2.95米,表示精确到百分位。保留一位小数是3.0米,表示精确到十分位,也就是说绳子的准确长度不小于2.95米,也不能等于或大于3.05米。因为如果是2.94米,保留一位小数就是2.9米了;如果是3.05米或3.06米,保留一位小数就是3.1米了。再看当保留整数位3时,表示精确到整数个位,也就是说准确长度不能小于2.5米,不能等于或大于3.5米。所以前一个近似数都比后一个近似数精确程度要高一些,即2.95米的精确度高于3.0米的精确度,3.0米的精确度又高于3米的精确度。

教师用投影片或小黑板出示第106页上半页做一做中的第1题,并且加一题:4.795(保留两位小数)。指名让学生做,集体订正。

教师:我们学会了怎样求一个小数的近似数。想一想,求一个小数的近似数应该注意什么?同桌讨论一下。

指名让学生发言,在学生发言的基础上教师总结:

1.要根据题目的要求取近似值,即:保留整数,就看十分位是几,要保留一位小数,就看百分位是几,......然后按四舍五入法决定是舍还是入。

2.取近似值时,在保留的小数位里,小数末一位或几位是0的,应当保留,不能去掉。

三、课堂练习

1.做第106页上半页做一做的第1、2题,学生独立做,做完以后,集体订正。

2.做练习二十四的第3题。

教师先提问:精确到十分位是什么意思?(保留一位小数。)

精确到百分位是什么意思?(保留二位小数。)

然后,让学生独立做,教师巡视,个别辅导,强调要注意的两点。做完后,集体订正。

四、课堂作业

练习二十四的第1-2题。

小数的近似数教案篇4

教学目标:

1.通过知识迁移,使学生能根据要求正确地运用“四舍五入法”求一个小数的近似数。2.使学生初步了解一个小时的近似数时表示的精确程度,理解求得一个小数的近似数时,小数末尾的“0”不能去掉。3.进一步培养学生运用旧知迁移新知和类比推理的能力。

教学重点:掌握用“四舍五入法”求一个小数的近似数。

教学难点:求小数的近似数时,小数末尾的“0”不能去掉的理解。

教学过程:

一、复习旧知,情境导入。

1.师:同学们好!很高兴今天能和大家一起学习。我一看见同学们就感觉很聪明,是不是这样?既然如此,老师就来考考你们,看看同学们表现如何!

2.板书出示:老师这有个数,请省略万后面的尾数,求出它的近似数。

先写黑板:12953≈1万

3.师:你是怎么想的?(省略万以后的位数,就是看尾数的最高位千位。千位是2,比5小,舍去。)

师:得数约等于1万,千位还可以是哪些数?(0、1、3、4)尾数的最高位比5小,直接舍去尾数。

师:如果得数约等于2万,千位上又可以是哪些数呢?(5、6、7、8、9尾数的最高位等于或大于5,向前一位进1,再舍去尾数。)

4.师:刚才我们求的是整数的近似数,你能说出求整数的近似数的方法吗?

学生说方法。(板书:求整数的近似数,先看所省略的最高位上的数是不是满5,再用四舍五入法保留。)学生齐读。同学们读得真好,和你们一起学习真快乐!

二、整合情景,探究交流。

1.师:今天我们来研究求一个小数的近似数,在实际应用小数时,往往没必要说出它的准确数,只要它的近似数就可以了。如:昨天豆豆体检,量得身高是(板书):0.984米。平常不需要说得那么准确,我们一般怎么说豆豆的身高呢?(学生讲,红红姐姐说豆豆身高0.98米。或1米。看回答情况板书。)

这就是0.984的近似数,你是怎么得到豆豆的身高的近似数?你们能利用已学的知识来说一说吗?

保留两位小数,就要省略百分位后面的尾数,看千分位。千分位是4,小于5,把尾数舍去。所以0.984≈0.98。

谁再来说一遍?(2-3名同学。表扬。)

2.(如果说的是1米,0.984的近似数还可以是多少?)小白弟弟的说法和小红姐姐不一样,他认为“豆豆身高约1米。”你能说说他的想法吗?

(保留整数,就要省略整数后面的尾数,看十分位。十分位是9,大于5,向前一位进1。所以0.984≈1。)谁再来说一遍?。请同桌把这两题的思考过程互相说一说。

3.同学们真能干,其实这就是我们今天要学习的求小数的近似数。(板书课题)请同学们回忆一下我们求近似数的过程,你发现求一个小数的近似数是怎样做的?(学生回答。)求小数的近似数和求整数的近似数的方法相同。板书:小数。全班读--求小数的近似数,先看所省略的最高位上的数是不是满5,再用四舍五入法保留。

4.现在,老师来考考你们,0.984可以保留整数、保留两位小数,如果0.984保留一位小数,应该是多少?(保留一位小数,就要省略十分位后面的尾数,看百分位。百分位是8,大于5,向前一位进1。十分位上9加1得10,再向个位进1,所以0.984≈1.0。)

5.学习了求小数的近似值,老师有一些疑惑不能解开,(幻灯出示)0.984保留一位小数得1.0,小数末尾的0能去掉吗,为什么?(指名回答。)

不能,题目要求保留一位小数,必须要0占位。求近似数时,小数末尾的零不能去掉。

求得的近似数1.0和1比较,哪一个更精确一些,为什么?

幻灯演示:保留整数为1,原来的'准确长度在1.4与0.5之间,保留一位小数是1.0,原来的长度在0.95与1.04之间。尽管两个数的大小相等,但表示的精确程度不同,小数保留的位数越多,精确的程度越高。

三、练习。(智力闯关。)

同学们利用我们以前学过的知识“求整数近似数的方法来求一个小数的近似数”,希望同学们在今后的学习中也能运用我们学过的知识来解决问题。

1.第一关。保留一位小数。

0.58≈0.63.788≈3.8

精确到百分位。精确到百分位就是保留几位小数?

12.004≈12.001.987≈1.99

保留整数。

9.956≈109.0448≈9

2.第二关。在□里填数。

2.9□≈2.98.5□7≈8.56

3.第三关。

姚明的身高约为2.2米,姚明的身高可能是多少米?

2.15(6、7、8、9)2.155……

2.20(1、2、3、4)2.……

四、全课。

你今天有哪些收获?保留一位小数,就是精确到十分位,……

板书设计

求小数的近似数

12953≈1万0.984≈0.98保留两位小数,看千分位。

小于5,舍去。小于5,舍去

0.984≈1.0保留一位小数,看百分位。

0.984≈1保留整数,看十分位。

大于5,向前一位进1。

小数的近似数教案篇5

教学内容:

义务教育课程标准实验教科书青岛版第71页《求小数的近似数》。

教学目标:

1.借助已有经验,使学生掌握求一个小数近似数的方法,能够正确地求一个小数的近似数。

2.在解决问题的过程中,培养学生自主学习的能力,初步学习用猜想、比较、归纳等数学方法学习数学知识。

3.通过独立思考,培养学生认真审题、解题的良好学习习惯。

教学过程:

一、创设情景

1.谈话:同学们,本单元前面几个信息窗我们学习了形形色色的鸟蛋和龟蛋带给我们的数学知识。本节课我们继续来学习本单元最后一个信息窗绿毛龟蛋带给我们的数学知识。

出示情境图,仔细观察画面,你知道了什么?你又能提出哪些数学问题?

学生合作交流。

2.谈话:这节课重点解决他们说的结果为什么不一样和绿毛龟蛋的宽径约是多少这两个问题。其他问题放在问题口袋里以后解决,可以吗?

[设计意图]激发学生的学习愿望和参与动机是引导学生主动学习的前提,通过清晰生动的情境图中出现的两位同学不同的测量结果让学生观察讨论,学生意见不一,于是需要寻找正确的判断方法,由此激起学生探寻新知的强烈愿望。

二、探究新知

1.学生独立思考他们说的结果为什么不一样?这一问题。

谈话:观察两位同学说的结果,你能发现什么?

让学生观察,引导学生发现:小华读出的结果是一个一位小数,小明读出的结果是一个整数。

谈话:对,求3.94的近似数,根据不同的要求,既可以保留一位小数,也可以保留整数。请同学们选择一种情况,根据我们求整数的近似数的方法,研究一下怎样求一个小数的近似数。

学生独立研究后,再在小组内交流。

谈话:哪位同学愿意说说你是怎样求3.94的近似数的?把你的方法向大家介绍一下。

谈话:你的方法很正确,还有哪位同学与他求得的近似数不同?

谈话:你的方法也很正确。因此,我们在求一个小数的近似数时,依然运用了四舍五入法,关键是看精确到哪一位。

2.学生独立思考绿毛龟蛋的宽径约是多少?这一问题

学生独立思考后,引导学生讨论什么时候小数的近似数的2,什么时候小数的近似数的2.0。

讨论得出:求一个小数的近似数时,保留小数的数位不同,精确程度也不同。

[设计意图]这一环节教学时让学生自己去观察,在观察中探究新知,在交流中归纳新知,把学习的主动权交给学生,在观察讨论过程中教谈话为学生创设自由选择的空间,让学生体会自由选择的轻松和快乐。

三、巩固应用

1.黄河的流域面积是75.14万平方千米。(保留一位小数)

2.把1.463保留整数、把1.463保留一位小数和把1.463保留两位小数这三种说法的结果是否是一样的?

3.小华的体重保留整数是45千克,他的体重可能是多少千克?

[设计意图]练习中让学生交流不同的思考方法,鼓励学生思维的创新,方法的简洁,但也照顾学生不同的认知水平,尊重学生的学习成果。

四、感悟收获

谈话:今天大家学得愉快吗?你们最大的收获是什么?

(学生自由说说说本课的收获及体验)

课后反思:

教师是教学的组织者和引导者,而不仅仅是解题的指导者。本节的教学我通过几个问题,几句话做适当的引导,而留给学生大量的时间让他们去观察,去思考,去交流,在观察中探究新知,在交流中归纳新知,把学习的主动权交给学生。在学习讨论的过程中,教师为学生创设自由选择的空间,引导学生敞开思维,多角度探索,实现高效率学习。