数学方程的教学反思8篇

时间:2023-01-23 作者:Mute

作为老师最重要的就是将教学反思写好,学会教学反思是教师专业发展和自我成长的的一个重要因素,团团范文网 小编今天就为您带来了数学方程的教学反思8篇,相信一定会对你有所帮助。

数学方程的教学反思8篇

数学方程的教学反思篇1

用一元二次方程解决实际问题是初中数学教学阶段重难点,仍运用将实际问题转化为数学问题,从而抽象出数学模型——方程解决、验证实际问题这一重要的数学思想,而且,一元二次方程解法熟练灵活程度直接体现学生的基本解题素养,因此,学会分析问题审清题意、布列方程解好方程就成了本节课、本阶段的重点。而学生经四五年方程训练,已有运用方程解题的意识和技能,所缺的是分析问题、解决题解的自主思维能力、灵活的解题技能,所以也成了教学难点。

如何突出重点、突破难点?(1)采用抓住关键条件即处于变化中的数量及其关系,进行具化——“物”化,假设联想,从而发现数量间变化关系,布列出方程。例如在讲习题:某京剧团准备在市歌舞剧院举行迎春演出活动,该剧院能容纳800人。经调研,如果票价定为30元,那么门票可以全部售完,门票价格每增加1元,售出的门票数目将减少10张。如果只想获得28000元的门票收入,那么票价应定为多少元.?

分析:“如果人数多于30人,那么每增加1人,人均旅游费用降低10元”是指“(30+1)时人均旅游费用(800—10)元;(30+2)时人均旅游费用(800—10×2)元;(30+3)时人均旅游费用(800—10×3)元;(30+4)时人均旅游费用(800—10×4)元…自然增加x人,即(30+x)时人均旅游费用(800—10x)元。根据基本数量关系式,不难得到[800-10(x-30)]·x=28000或(800-10x)·(x+30)=28000。”

(2)反复提炼、对比优化思考过程,经过思、说、辩,从而内化为解题图式,学生因成功体验的累积产生解题自信心,有为的动力。如就同一方程创设了不同的问题情境,拓展了学生的思维视野,同化了不同问题情境的题,增强了学生举一反三、融会贯通的解题技能,收到事半功倍的效果。

(3)解方程要因题而异,先化简再转化为一般形式的方程,不要匆匆地展开,展开时做一步验一步,最终结合实际情况取舍方程的解。

尽管细致引导,不激励,不让其自圆其说,学生自我矫正系统掌握还是比较困难的。把课件当作激励启思载体,教学案当作技能形成的砺石,是我教学主要风格,本节课充分体现这点。

数学方程的教学反思篇2

一元二次方程的应用是在学习了前面的一元二次方程的解法的基础上,结合实际问题,讨论了如何分析数量关系,利用相等关系来列方程,以及如何解答。

列方程解决实际问题,最重要的是审题,审题是列方程的基础,而列方程是解题的关键,只有在透彻理解题意的基础上,才能恰当地设出未知数,准确找出已知量与未知量之间的等量关系,正确地列出方程。

在本章教学中我注意分散教学难点,比如说,在学习增长率问题时,我先设计了这样一组练习:一个车间二月份生产零件500个,三月份比二月份增产10%,三月份生产-----------个零件,如果四月份想再增产10%,四月份生产零件-----------个。如果增产的百分率是x,那三月份和四月份各能生产零件多少个?通过分散教学难点,引导学生理解题意,从而达到满意的教学效果。

在本章教学中我还注意对学生进行学法的指导。比如说,在做习题7.12第2题时,有的同学想象不出图形,就应引导他们画出示意图;在比如学习最后一个例题时,面对那么多的量,并且是运动中的量,许多学生无从下手,此时就要引导学生把量在图形中先标示出来,在慢慢分析题中的数量关系。在分析问题时,要强调当设完未知数,那它就是已知数,参与量的标示。

总之,在教学中通过学生的自主探究、小组间的合作交流、教师的及时点拨,进一步提高学生分析问题、解决问题的能力。

数学方程的教学反思篇3

利用求根公式解一元二次方程的一般步骤:

1、找出a,b,c的相应的数值

2、验判别式是否大于等于0

3、当判别式的数值符合条件,可以利用公式求根、

学生第一次接触求根公式,学生可以说非常陌生,由于过高估计学生的能力,结果出现错误较多、

1、a,b,c的符号问题出错,在方程中学生往往在找某个项的系数时总是丢掉前面的符号

2、求根公式本身就很难,形式复杂,代入数值后出错很多、

其实在做题过程中检验一下判别式这一步单独提出来做并不麻烦,直接用公式求值也要进行,提前做这一步在到求根公式时可以把数值直接代入、在今后的教学中注意详略得当,不该省的地方一定不能省,力求达到更好的教学效果、

通过本节课的教学,总体感觉调动了学生的积极性,能够充分发挥学生的主体作用,激发了学生思维的火花,具体有以下几个特点:

本节课第一个例题,我在引导解决此题之后,总结了利用求根公式解一元二次方程的一般步骤,不仅关注结果更关注过程,让学生养成良好的解题习惯。

例2、3是例1的变式与提高,通过变式训练,让学生由浅入深,由易到难,也让学生解决问题的能力提高,这是这节课中的一大亮点,在讲完例题的基础上,将更多的时间留给学生,这样学生感觉到成功的机会增加,从而有一种积极的学习态度,同时学生在学习中相互交流,相互学习,共同提高。

课堂上多给学生展示的机会,让学生走上讲台,向同学们展示自己的聪明才智。总之通过各种激励的教学手段,帮助学生形成积极的学习态度,课堂收效大。

需要改进的方面,由于怕完不成任务,教师讲的还是多了些,以后应最大限度的发挥学生的主体作用。

数学方程的教学反思篇4

当我上初一新教材第六章时,我产生了这样的想法:一元一次方程没多少内容,不用安排那么多课时,完全可以压缩课时,集中时间练一些方程应用题,一节课一个例题,有什么讲的,讲什么?找点课外题做一做吧。尽管产生了这样的想法,但通过阅读课标,按照课标的要求,为了贯彻课改的理念,终于领会到:教材既然是以情景为先导,以渗透数学模型为主线,充满了转化思想,不断强化思维的开放性,那我们就应该放开手,解放思想去尝试。这一章很快就结束了,我感到一个困惑,也明显的从三个做法中受到鼓舞和启示。

一个困惑是:

一元一次方程的解法。我们的学生掌握得很有限,教过来,心里没底。从教材内容上看,它不是用可操作的步骤去解题,而是用转化思想解题,把有分母的转化成带括号的,把带括号的成不带括号的,再实施同解变形,最后将方程转化到x=a的形式,也就是说数学语言:“x=a是一元一次方程的解”是解方程总的目标,为什么要实施这样的转变,为实施那样的同解变形,教材是通过例5转化成例4再转化例1的,而学生学习例1,例2到例5,对转化的思想体会的不是很到位。

三点做法是:

(一)在实践与探索问题2的教学中,有关情景的设置,教材把储蓄利率,打折促销问题作为一个问题来探索。我们在教学中,怎样把学生带到生活中去?让学生兴致勃勃的参与问题的探究呢?我通过自身的经历,买鞋的遭遇,解释市场打折促销的违法行为,结合教学内容,使教学变得生动,学生的情绪变得昂扬,取得了很好的教学效果。

(二)在问题3的教学中,怎样渗透数学模型。注重教材中的特有现象,进行了一题多解的有益探索,这个复杂的发散过程,从哪个焦点发散呢?在怎样的模型下呈现给学生一个又一个好的解法呢?通过组织学生分析,建立了三个模型:

(1)公共汽车行驶剩余2/3路程所用时间比出租车行驶的时间长3/4小时。

(2)小张从家到火车站所用的时间比乘公共汽车所用的时间长3/4小时。

(3)出租车行驶的路程是小张家到火车站全程的2/3。(或是小张乘公共汽车所走路程的2倍等)然后选择了灵活的开放途径,一是可设多条路程。二是可设多种的速度。这样就呈现出多种多样的探索方式,从而获得了15种左右的解法,总结给学生,达到了开放思维的目的,在学生的学习中产生了很好的效果。

(三)对于问题4的教学,培养学生的想象力的一点教训。根据情景,提出问题,编题是教材的一个显著特点,怎样结合问题4的教学,达到课标对学生创造精神的要求。我进行了大胆试验和探索,在教学中,学生思维活跃,各种角度的问题层出不穷。情景围绕题意变化多端,一时难以及时诊断,便把探索的过程延续到课堂外,这种情况的发生,我深深的认识到,对一个问题的探索,特别是根据情景编题,这样一个极具想象的思维过程全靠40分钟的课堂去认识这是不可能的,把课堂的内容延续到课外,给学生一个再实践,再认识的全过程其本身也是想象力的真实写照,总结这些内容,学生仍感到回味无穷,达到了很高的教学境界。

反思第六章的教学:一是对数学教学活动有了更清楚的认识,数学教学必须建立在学生认知发展水平和已有的知识经验基础上,学生的学习热情,学习兴趣的培养,学习技能的形成,与教师的教学方式息息相关。我们像以往那样天天作卷,考试,和我们引导学生自主探索,合作交流,对学生数学学习的影响有着迥异的差异。从学生的发展出发,从教师的发展出发,让数学教学真正成为一种学生数学学习机会的创设,学生数学知识的探究。学生自主学习的活动,将是我们今后数学教学发展方向。二是我们对校本研究有了更清楚的认识,课程教材从内容材料的安排的呈现方式,编写的顺序等。几乎所有方面都发生了深刻的变化,时时都有问题,题题都有问题,我们要从问题开始,精心设计,在实践中检验,最后不断总结,反思提高,再循环往复中螺旋上升。反思是为了提高,为了发展,为的是更好的研究、给课改积累经验教训。让我们同学生一起,教学相长,不断探索课改新思路。

数学方程的教学反思篇5

本课内容是《二元一次方程组》,本堂课主要两个内容:一个是二元一次方程组的概念并能在实际问题中找出相等关系列出方程组,另一个是二元一次方程组的解的概念。

以前上这节课,我的基本流程是(1)给出一个实际问题请同学们来分析题目,设出未知数,寻找相等关系,列出方程,当然前提是设两个未知数,得到一个二元一次方程组,然后给出概念,提醒学生要注意概念中是含有两个未知数的两个一次方程所组成的,接下来就给出几个判断巩固定义(2)给出二元一次方程组的解的定义,并举几个题目来巩固(3)做书本上的习题。

这次备这节课时,我就想到以前上这课很没有意思,学生觉得内容很简单很枯燥,因为昨天已经学过二元一次方程,今天二元一次方程组的概念就很容易接受了,而且根据简单的实际问题来列方程组对他们而言也不是难事。在备课时我就从学生的角度去看教材,既然内容简单那就让学生来讲。所以我今天上课的流程变成先复习昨天所学的二元一次方程以及二元一次方程的解的定义,然后直接给出本堂课的内容:二元一次方程组以及二元一次方程组的解的概念,请同学们根据名称思考什么是二元一次方程组以及二元一次方程组的解呢?请举例说明。给他们几分钟时间思考以后,就请学生来当小老师,上黑板来讲,也有同学觉得小老师讲的不够清楚,又上来重讲的,一共请了3名同学上来讲。下面的同学听过以后提出他们的问题,有同学提出的问题很简单,也有同学提出了一个引起大家争议的问题,就是x=3,x+y=4这样的方程组是不是二元一次方程组,在大家争论以后我给出了正确答案以及这个概念中的注意点。后来我又请学生根据小老师在黑板上列出的二元一次方程组编应用题。最后在请学生来总结今天所学到的主要内容和注意点。

今天这节课结束以后,我觉得虽然课堂纪律不太好,但基本上所有学生都动了起来,注意力比较集中,对重点内容也都能掌握,感觉比以前所上的这节课效果要好。所以我想无论什么样的课只要在备课时能真正的将“备教材”“备学生”“用学生的眼光看教材”三者结合起来,那么我们就能将每一节课都上成学生不仅能学到知识,同时能主动参与其中的课,让数学课不在枯燥,不在死板,让学生在愉悦的心情中学到知识,成为学生喜爱的课。

数学方程的教学反思篇6

这节课的'内容包括两个方面:一是探索并理解“等式两边同时加上或减去同一个数,所得结果仍然是等式”;二是应用等式的性质解只含有加法和减法运算的简便方程。解方程是学生刚接触的新鲜知识,学生在知识经验的储备上明显不足,因此数学中老师要时刻关注学生的学习状态,引领学生经历将现实、具体的问题加以数学化,引导学生通过操作、观察、分析和比较,由具体到抽象理解等式的性质,并应用等式的性质解方程。在这节课的教学中,让学生理解并掌握等式的性质应是解决一系列问题的关键。

一、让学生在操作中发现

课开始,老师出示天平并在两边各放一个50克的砝码,“你能用式子表示出两边的关系吗?”学生写出50=50;老师在天平的一边增加一个20克砝码,“这时的关系怎么表示?”学生写出50+20>50,“这时天平的两边不相等,怎样才能让天平两边相等?”学生交流得出在天平的另一边增加同样重量的砝码;“你有什么发现吗?”“自己写几个等式看一看。”通过具体的操作为学生探究问题,寻找结论提供了真实的情境,辅以启发性、引领性的问题,让学生经历了解决问题的过程,并在问题的解决中发现并获得知识。

二、让学生在发现中操作

引入了等式的性质,其目的就是让学生应用这一性质去解方程,第一次学生解方程,学生心理上难免会有些准备不足,为了帮助学生应用等式的性质解方程,教者先利用天平所显示的数量关系,引导学生发现“在方程的两边都减去100,使方程的左边只剩下x”,通过这样有步骤的练习,帮助学生逐渐掌握解方程的方法。

数学方程的教学反思篇7

纵观整节课教学,我认为已经基本把握教材的重难点。在讲解“方程的解”定义时,能从验算例子答案出发,让学生体会到“方程左右两边相等”的特征,从而能更好地理解“方程的解”的定义。

在讲授“解方程”定义概念时,我主要从教材思想出发,通过让学生说出采用各自不同的方法求解方程的解,让学生明白“解方程的各种方法,目的只有一个,那就是求出解,但不同的方法有自身不同的求解过程”着重让学生理解“求解过程”。

在这基础上,让学生讨论发现两个概念定义之间的区别。

在讲授“解方程:x+7=13”例题时,我安排一个成绩中等的学生上来解答(因为是新课,学生还没有接触过正确规范的书写格式,学生的求解方法和过程步骤,能代表整个班级的情况。况且学生的求解过程能起到反例的作用,为下面比较教学——从对比中认识正确的求解过程做好铺垫)

板书正确书写格式后,让学生通过比较发现该如何正确规范地求解方程的解。

整节课教学存在几点不足:

1、学生课堂练习量少。这与定义的教学花费太多时间有关。

2、对学生新课之前的求解方程的解的方法缺少关注。解方程是可以有很多方法的,需要鼓励学生的多向发散思维。

3、教师课堂上虽然提到“对于一个x的值,它究竟是不是方程的解呢?为什么?”,但还是缺乏相关练习,因为这一内容对理解“方程的解”有极强的意义。

数学方程的教学反思篇8

问题:已知某商品的进价为每件40元。现在的售价是每件60元,每星期可卖出300件。市场调查反映:如调整价格,每涨价一元,每星期要少卖出10件;每降价一元,每星期可多卖出20件。如何定价才能使利润最大?

函数也是解决实际问题的一个重要的数学模型,是初中的重要内容之一。其实这这类利润问题的题目对于学生来说很熟悉,在上学期的二次方程的应用,经常做关于利润的题目,其中的数量关系学生也很熟悉,所不同的是方程题目告诉利润求定价,函数题目不告诉利润而求如何定价利润最高。如何解决二者之间跨越?于是在第二节课的教学时我做了如下调整,设计成三个题目:

1、已知某商品的进价为每件40元,售价是每件60元,每星期可卖出300件。市场调查反映:如调整价格,每涨价1元,每星期要少卖出10件。要想获得6000元的利润,该商品应定价为多少元?

(学生很自然列方程解决)

改换题目条件和问题:

2、已知某商品的进价为每件40元,售价是每件60元,每星期可卖出300件。市场调查反映:如调整价格,每涨价一元,每星期要少卖出10件。该商品应定价为多少元时,商场能获得最大利润?

分析:该题是求最大利润,是个未知的量,引导学生发现该题目中有两个变量——定价和利润,符合函数定义,从而想到用函数知识来解决——二次函数的极值问题,并且利润一旦设定,就当已知参与建立等式。

于是学生很容易完成下列求解。

解:设该商品定价为x元时,可获得利润为y元

依题意得:y=(x-40)?〔300-10(x-60)〕

=-10x2+1300x-36000

=-10(x-65)2+6250300-10(x-60)≥0

当x=65时,函数有最大值。得x≤90

(40≤x≤90)

即该商品定价65元时,可获得最大利润。

增加难度,即原例题

3、已知某商品的进价为每件40元。现在的售价是每件60元,每星期可卖出300件。市场调查反映:如调整价格,每涨价一元,每星期要少卖出10件;每降价一元,每星期可多卖出20件。如何定价才能使利润最大?

该题与第2题相比,多了一种情况,如何定价才能使利润最大,需要两种情况的结果作比较才能得出结论。我把题目全放给学生,结果学生很快解决。多了两个题目,需要的时间更短,学生掌握的更好。这说明我们在平时教学中确实需要掌握一些教学技巧,在题目的设计上要有梯度,给学生一个循序渐进的过程,这样学生学得轻松,老师教的轻松,还能收到好的效果。