制定一份内容全面的教案,我们的教学水平也会有所提升,教案在拟订的时候,我们务必要注意逻辑思路清晰,下面是团团范文网 小编为您分享的分数与除法教案通用5篇,感谢您的参阅。
分数与除法教案篇1
教学目标:
1、理解分数除以整数的意义,掌握分数除以整数的计算方法,并能正确计算。
2、通过实践活动和自主探究,培养学生动手能力及发现问题、解决问题的能力。
3、通过一系列“自主探究----得出结论”的过程,体验其中的成就感,增强学生学习数学的自信心。
教学重点:
理解分数除法的意义,掌握分数除以整数的计算方法。
教学难点:
分数除以整数计算法则的推导过程。
教学准备:
多媒体课件、长方形纸等。
教学过程:
一、旧知复习,蕴伏铺垫
复习时我安排了两道练习,引发学生记忆的再现,为学生选择原有知识中的有效的信息做好铺垫。
1、展示问题:
(1)什么是倒数?
(2)你能举出几对倒数的例子吗?
(3)如何求一个数的倒数?
2、展示多媒体:笑笑和淘气去买白糖。
问题1:他们每人买了两袋白糖,一共买了多少袋白糖?
问题2:这些白糖一共重2千克,每袋白糖有多重?
问题3:如果笑笑家15天吃完一袋白糖,那么平均每天吃多少千克?
二、创设情境,理解意义
展示多媒体:把一张纸的4/7平均分成2份,每份是这张纸的几分之几?
1、利用准备好的纸,先把纸平均分成7份,再涂出其中的4份,然后再将这4份平均分成2份,将其中1份涂色,最后看看涂上色的这部分占整张纸的几分之几。
2、汇报
三、大胆猜想
学生通过操作,明白2/7是怎样得到的。那么到底应该怎样计算分数除法呢?让学生大胆猜想分数除法的计算方法。学生根据刚才的推理,很容易得出“分母不变,被除数的分子除以整数得到商的分子”的计算方法。
四、再次探究
1、学生很快发现有些算式是无法用以上结论计算出来的,如4/7÷3,分子4除以3是除不尽的。
2、让学生动手分一分、涂一涂,然后再让他们进行小组交流。
3、得出分数除法的计算方法:除以一个整数(零除外)等于乘这个整数的倒数。
板书: 分数除法(二)
除以一个整数(零除外)等于乘这个整数的倒数。
分数与除法教案篇2
教学目标
使学生掌握分数除法和加减法混合运算的运算顺序,能正确地进行运算,并能具体情况采用合理的计算方法,提高学生四则计算的能力。
教学重难点
运算顺序,简便运算。
教学准备
教学过程设计
教学内容
师生活动
备注
一、复习引新
二、教学新课
三、
四、作业
1、说说下面各题的运算顺序。
8÷2+9÷318÷(12-3)
2、引入新课
1、教学例1
这道题要先算什么,再算什么?
上下练习。
引导观察计算过程,说明递等式书写的规范过程,并说明理由。
2、组织练习。
练一练1
说顺序后练习。
3、例2
说运算顺序,这里除法的两步按照计算法则要怎样算?
观察转化成乘法后的算式,想一想,是不是可以简便运算?
上下用简便算法。
问:用了什么运算定律?
4、练习;
练一练2
这里除一个数要怎样算?
用简便算法。
说说各运用了什么运算定律,是怎样算的?
说说运算顺序,要注意什么?
练习111~3、4、5
课后感受
混合运算学生做起来很简单,只是在简便运算上还要注意灵活运用。
分数与除法教案篇3
教学内容:
人教版五年级数学下册第四单元p49l。
教学目标:
1、使学生理解两个整数相除的商可以用分数来表示,会用分数表示两个数相除的商。
2、使学生正确理解和掌握分数与除法的`关系
3、培养学生的应用意识,渗透辩证思想,激发学生学习兴趣。
教学重难点:
1、理解和掌握分数与除法的关系。
2、用除法的意义理解分数的意义。
教学具准备:
课本主题挂图,圆形纸片(4—5张)。
教学过程:
一、创设问题,复习导入
1、填空。
6表示()。
7(2)的分数单位是(),它有()个这样的分数单位。10(1)
2、问题引入
师:5除以9,商是多少?(板书:5÷9=)如果商不用小数表示,还有其他方法吗?有了分数,就可以解决这个问题。这节课我们就来学习怎样用分数表示除法的商,认识“分数与除法的关系”。板书课题:分数与除法
二、探索研究,学习新知
(一)教学例1
1、出示主题挂图,读题后,指导学生根据整数除法的意义列出算式。
2、讨论:1除以3结果是多少?你是怎样想的?
3、汇报讨论结果:
生:我解答这道题的列式是1÷3,可以把一个蛋糕看作单位“1”,把它平均分成3份,表示这样的一份的数,可以用分数1111来表示,1个蛋糕的就是个,所以,1÷3=。3333
教师根据学生回答板书:
1÷3=
(二)教学例3
1、出示主题挂图,读题后,引导学生列出算式:3÷4。
2、指导学生动手操作:拿出三张同样大小的圆形纸片,把它看作3块饼,用剪刀把它们分成同样大小的4份。
引导学生边分边思考:我们把谁看作单位“1”?把它平均分成4份,每份是多少?你想怎样分?教师巡视,参与指导。
3、汇报演示分得的过程及结果,教师根据学生汇报总结不同的分法。
方法一:可以一个一个地分,先把每块月饼平均分成4份,每块可分得4个
个11(个)答:每人分得个。331,3块月饼共分得124113,平均分给4个人,每人可分得3个,合在一起是块。
3块月饼,4方法二:可以把3块月饼叠在一起,再平均分成4份,拿出其中的1份,拼在一起就得到
所以每人分得3块。(如图)
板书:3÷4=
4、理解。师:33(块)答:每人分得块。443块月饼表示什么意思?
指导学生说清理解:表示把3个月饼平均分成4份,表示这样1份的数;还可以表示把1个月饼平均分成4份,表示这样3份的数。师:去掉单位名称,你能说一说3表示的意思吗?
可以放手让学生说一说,归结明白:可以表示把单位“1”平均分成4份,表示这样3份的数;还可以表示把3平均分成4份,表示这样1份的数。
分数与除法教案篇4
教学目标:
1、使学生理解两个整数相除的商可以用分数来表示。
2、使学生掌握分数与除法的关系。
3、培养学生的应用意识。
教学重点:
1、理解归纳分数与除法的关系。
2、用除法的意义理解分数的意义。
教学准备:
课件、圆片
教学过程:
一、复习引入
师:同学们,上节课我们学习了分数的产生和意义。在进行测量、分物或计算时,往往不能正好得到整数的结果,这时,我们常用分数来表示。那么什么是分数呢?(学生回答分数的意义)
课件出示练习题
(1)把一根铁丝平均截成3段,每段的长度是这根铁丝的几分之几?这道题把谁看作单位“1”?
(2)把9个香蕉平均分成3份,每份是这些香蕉的几分之几?每份有几个?
(3)把1包饼干平均分给2个人,每人分得(1/2)包 。
引入:知识与知识之间存在着许多密切的关系,这节课我们来研究一下分数与除法之间的关系。(板书课题)
二、探究新知
课件出示习题
(1)把18个蛋糕平均分给3个人,每个人分得多少个?(列式计算)
(2)把6个蛋糕平均分给3个人,每个人分得多少个?(列式计算)
师:这两道题都是我们学过的用除法来解决的问题,计算的都是把一个整体平均分成3份,求每份是多少。下面我们再来看一下这道题。
出示例1:把1个蛋糕平均分给3个人,每个人分得多少个?
师:这道题该怎样列式呢?(学生列式,师板书:1÷3)
师:1÷3表示什么意思?
生:1÷3表示把一个蛋糕平均分给3个人,求一个人分得多少。
师:好,这道题也是把一个整体平均分成3份,求一份是多少,也是平均分的问题,所以也要用除法来计算。那么,你知道每人分得多少个吗?
生:1/3个。(师板书)
师:大家都认为是这样吗?(是)谁来说说你是怎么想的?
教师出示课件,学生边说边演示:我们把这个圆看作这个蛋糕,把它平均分成3份,每人得到其中的一份,也就是这个蛋糕的1/3 。
师:请大家看,每份都是1/3 ,每个人得到的是多少个蛋糕呢?
生:1/3 个。
师:在分物时,不能正好得到整数的结果,我们就可以用分数来表示。所以每个人分得的蛋糕就是 个。
教师说明:1÷3表示把一个蛋糕平均分给3个人,求每人得到多少个,而我们通过演示知道了每人得到1/3个。所以1÷3的结果就是1/3。(板书“=”)(齐读算式)
师:一个蛋糕平均分给3个人,我们知道了每人分得1/3个,现在要分一些其它的物品,你会吗?(课件出示例2)
指名读题
师:谁能列出算式?
生:3÷4(师板书)
师:这道题是把一个整体平均分成4份,求每份是多少,也是用除法来计算的。究竟每人分得多少块月饼呢?老师为每个小组都准备了学具(3个圆片),现在请大家利用手中的学具一起动手分一分,看看到底每人分得多少块月饼。
小组操作,教师巡视指导。
师:大家都有了结论了,哪个小组的同学愿意来给大家说一说你们小组的结论是什么?
(小组边汇报,边演示)
小组1汇报:我们小组是一个一个分的。我们先把一个圆平均分成4份,每人得到其中的1份,也就是1/4块。
师:你能用一个式子表示一下吗?
小组1:1÷4=1/4块。
师:好。请接着汇报吧。
小组1:接下来,我们按照同样的方法分其他两个圆。最后每个人分到的是3个1/4块,也就是3/4块。
师:大家认为他们的方法可以吗?(可以)我们再来一起回忆一下他们的方法。(教师边叙述方法,边进行课件演示)
师:还有没有和这组方法不同的?
小组2汇报:我们小组是把3个圆叠放在一起,把它们一起平均分成4份,每人得到其中的1份,拼在一起就得到了3/4块。
师:(课件演示方法二)这种方法是把3块月饼放在一起,把它们看成一个整体,平均分成4份,每人得到了其中的一份,也就是3块月饼的1/4,拼在一起就是3/4块。
师:通过大家操作我们知道了每人得到了3/4块月饼(板书3/4块)。有些同学是一块一块分的,有些同学是3块一起分的,但这两种不同的方法都得到了3/4块,也就是说3÷4的结果就是3/4。
师:请大家看一看,今天这两道除法算式的结果都是什么数?(分数)请大家想一想,分数与除法有什么关系呢?
学生小组讨论
生:我们发现,被除数就是分子,除数就是分母。
师:你能试着表示出来吗?
生:被除数÷除数=被除数/除数(师板书)
师:如果用a来表示被除数,b表示除数,你能用字母来表示分数与除法之间的关系吗?
生1:a÷b=a/b(师板书)
生2:老师,我认为还要写上b≠0。
师:为什么b≠0?
生:因为b表示除数,除数不能为0。
生:分数的分母也不能等于0。
师:好。通过观察思考,我们知道了分数与除法存在着这样的关系(齐读分数与除法的关系)
师:我们知道,两个整数相除,商可以用分数来表示,反过来看看,分数能不能表示两个整数相除呢?
学生观察算式,思考
生:可以。比如3/4=3÷4。
课件出示,齐读:两个整数相除,商可以用分数来表示,要用除数作分母,被除数作分子。反之,一个分数也可以看作两个数相除,分数的分子相当于除法中的被除数,分母相当于除数,
分数线相当于除号。
师:我们通过学习了解了分数与除法的联系,那么分数与除法有什么区别呢?
请学生观察黑板算式,和同学讨论。
学生汇报,教师总结:除法和我们学过的加法、减法、乘法一样,是一种运算;而分数是一种数,同时分数也可以表示两个数相除。
三、巩固练习
1、用分数表示下列算式的商
7÷13= 3÷11= 8÷5=
9÷16= m÷n=
2、试一试
( )÷7=4/7 1÷( )=1/3
7/9=( )÷9 5/8=( )÷( )
3、把1千克葡萄干平均装在2个袋子里,每袋重多少千克?平均装在3个袋子中呢?
4、填空(练习十二3题)
5、把5米长的绳子平均截成8段,每段长(5/8)米,每段绳子的长度是全长的(1/8)。
四、全课总结
分数与除法教案篇5
教学目标:
1、通过实例,使学生知道分数除法的意义与整数除法的意义是相同的,并使学生掌握分数除以整数的计算法则。
2、动手操作,通过直观认识使学生理解整数除以分数,引导学生正确地总结出计算法则,能运用法则正确地进行计算。
3、培养学生观察、比较、分析的能力和语言表达能力,提高计算能力。
教学重点:
使学生理解算理,正确总结、应用计算法则。
教学难点:
使学生理解整数除以分数的算理。
教具准备:多媒体课件
教学过程:
一、旧知铺垫(课件出示)
1、复习整数除法的意义
(1)引导学生回忆整数除法的计算法则:已知两个因数的积与其中一个因数,求另一个因数的运算。
(2)根据已知的乘法算式:5×6=30,写出相关的两个除法算式。(30÷5=6,30÷6=5)
2、口算下面各题
×3 × ×
× ×6 ×
二、新知探究
(一)、教学例1
1、课件出示自学提纲:
(1)出示插图及乘法应用题,学生列式计算。
(2)学生把这道乘法应用题改编成两道除法应用题,并解答。
(3)将100克化成千克,300克化成千克,得出三道分数乘、除法算式。
2、学生自学后小组间交流
3、全班汇报:
100×3=300(克)
a、3盒水果糖重300克,每盒有多重? 300÷3=100(克)
b、300克水果糖,每盒100克,可以装几盒? 300÷100=3(盒)
×3= (千克) ÷3= (千克) ÷3=3(盒)
4、引导学生通过整数题组和分数题组的对照,小组讨论后得出:
分数除法的'意义与整数除法相同,都是已知两个因数的积与其
中一个因数,求另个一个因数。都是乘法的逆运算。
(二)、巩固分数除法意义的练习:p28“做一做”
(三)、教学例2
(1)学生拿出课前准备好的纸,小组讨论操作,如何把这张纸的平均分成2份,并通过操作得出每份是这张纸的几分之几。
(2)小组汇报操作过程,得出:将一张纸的平均分成2份,每份是这张纸的。
(3)引导学生数形结合,对照不同的折法,说出两种不同的计算方法。
a、 ÷2= =,每份就是2个。
b、 ÷2= × =,每份就是的。
(4)如果把这张纸的平均分成3份呢?让学生从上面两种方法中选择一种进行计算,通过操作对比,让学生发现第二种方法适用的范围更广。
4、引导学生观察÷2和÷3两个算式,概括出分数除以整数的计算法则:分数除以整数,等于乘上这个整数的倒数。
三、当堂测评(课件出示)
1、计算
÷3 ÷3 ÷20 ÷5 ÷10 ÷6
2、解决问题
(1)、一辆货车2小时耗油10/3升,平均每小时耗油多少升?
(2)、正方形的周长是4/5米,它的边长是多少米?
学生独立完成。
教师讲评,小组间批阅。
四、课堂总结
1、今天我们学习了哪些内容?(分数除法的意义及分数除以整数的计算法则)
2、谁来把这两部分内容说一说?
教学后记