三角形角的关系教案8篇

时间:2023-08-19 作者:Iraqis

每个教案都经过反复雕琢,以确保教学效果最佳,在设计教案时,我们要充分利用多种教学资源,下面是团团范文网 小编为您分享的三角形角的关系教案8篇,感谢您的参阅。

三角形角的关系教案8篇

三角形角的关系教案篇1

【教学目标】

1.探究三角形三边的关系,知道三角形任意两边的和大于第三边。

2.根据三角形三边的关系解释生活中的现象,提高用数学知识解决实际问题的能力。

3.提高学生观察、思考、抽象概括能力和动手操作能力。

4.积极参与探究活动,在活动中获得成功的体验,产生学习的兴趣。

【教学重点】

让学生探索三角形三条边的关系

【教学难点】

引导学生通过自主探究得出“三角形任意两条边的和大于第三边”的结论。

【教具】

多媒体课件

【教学过程】

一.预习提纲

1、三角形按角分类有哪几种?

2、按边分类有哪几种?

3、三角形任意两边的和与第三边有什么关系?

二.展示交流

(一)创设情境,导入新课

今天,我们给大家介绍一位新朋友——小明,你们看,他正在做什么?(课件演示,课件内容为教材第82页小明上学图。)

小明从家到学校有几条路线呢?

这三条路线中哪条路线离学校最近?为什么?

小组讨论、交流、汇报。

同学们都说出了自己的想法,有些同学是结合自己的生活经验谈的,有些同学是用测量的方法量出来的。大家想一想,在生活中这些路线我们不可能去用尺子一米一米的量出它的长短,这个时候我们应该怎么办呢?

我们用数学知识看看能不能解决这个问题。请同学们仔细看,从小明家到邮局再到学校的路线近似于一个什么图形?

走中间的这条路线,走过的路线是三角形的一条边,走旁边的路线,走过的路程实际上就是三角形的另外两条边的和。根据大家的判断,走三角形的两条边的和要比走第三条边长。那么,是不是所有三角形的三条边都有这样的关系呢?我们来做个实验。

(二)小组合作,探索新知

实验1:请同学们从准备的学具中任意拿出三张纸条摆出一个三角形,看看你能发现什么?学生动手操作、交流。

实验2:深入探究在什么情况下能组成三角形。

1.动手操作

从纸条中任意拿出三张纸条,看看能不能摆出一个三角形?把能组成三角形和不能组成三角形的情况分别填在实验表格中。

出示表格:(单位:厘米)

能组成三角形

任意两边的和是否大于第三边

你发现

不能组成三角形

任意两边的和是否大于第三边

你发现

学生汇报实验结果。

2.分析、探索(课件出示)

①观察自己的实验表格,说一说不能摆成三角形的情况有几种。

②能组成三角形的三条边有什么关系?

③“任意两边的和都大于第三边”这句话是什么意思?

④那根据你们的实验观察,大家都认为三角形的两边之和大于第三边吗?

⑤大家的发现到底对不对?请各小组摆三角形来验证一下。

以上分小组讨论,然后全班交流。

3.教师小结

同学们通过实验、验证,我们发现如果任意两条线段的和大于第三条线段,这三条线段就能组成三角形,也就是说,三角形的任意两边之和大于第三边。

三.检测反馈

1.讲解小明选择上学的路线。现在你能用这个发现来解释小明家到学校哪条路最近的原因吗?

2.游戏

游戏一:红绿灯

要求:每组的三根小棒能组成三角形的,绿灯通过;不能组成三角形的,红灯停。(单位:厘米)

(1)————4

—————5

——————6

(2)————4

————4

——————6

(3)———3

———3

——————6

(4)———3

——2

——————6

我们每次都是把三条线段中任意两条线段相加后才判断的,你们能不能相出一个更简单的方法呢?(用较短的两条线段的和与第三条线段比较来检验。)

游戏二:

要求:下面这些线段里面能组成三角形的三条线段是一组好朋友,找找看,哪三条线段是一组好朋友?

2厘米4厘米5厘米8厘米10厘米

游戏三:猜一猜。

要求:现在有两根分别长为3厘米、6厘米的小棒。猜一猜,能与它们组成三角形的第三根小棒长几厘米?说说你的想法。

四.课堂总结

通过这节课的学习,大家有什么收获?

对数学知识的学习,你有了哪些新的认识?

五.板书设计

三角形的特征

教学反思:

本节课根据三角形三边的关系解释生活中的现象,学生在学习中很有兴趣.提高了用数学知识解决实际问题的能力。他们积极参与探究活动,在活动中获得成功的体验,产生学习的兴趣。

三角形角的关系教案篇2

【教学内容】:

人教版义务教育课程标准试验教科书数学四年级下册第67页。

【设计理念】

遵循由特殊到一般的规律进行探究活动是这节课设计的主要特点之一。《数学课程标准》指出,让学生学习有价值的数学,让学生带着问题、带着自己的思想、自己的思维进入数学课堂,对于学生的数学学习有着重要作用。因此,我尝试着将数学文本、课外预习、课堂教学三方有机整合,在质疑、解疑、释疑中展开教学,培养学生提出问题、分析问题和解决问题的探究能力。

【教材分析】

三角形的内角和是三角形的一个重要特征。本课是安排在学习三角形的概念及分类之后进行的,它是学生以后学习多边形的内角和及解决其它实际问题的基础。学生在掌握知识方面:已经掌握了三角形的分类,比较熟悉平角等有关知识;能力方面:经过三年多的学习,已具备了初步的动手操作能力和主动探究能力以及合作学习的习惯。因此,教材很重视知识的探索与发现,安排了一系列的实验操作活动。教材呈现教学内容时,不但重视体现知识的形成过程,而且注意留给学生充分进行自主探索和交流的空间,为教师灵活组织教学提供了清晰的思路。概念的形成没有直接给出结论,而是通过量、算、拼等活动,让学生探索、实验、发现、讨论交流、推理归纳出三角形的内角和是180°。

【学情分析】

学生已经掌握三角形特性和分类,熟悉了钝角、锐角、平角这些角的知识,大多数学生已经在课前通过不同的途径知道“三角形的内角和是180度”的结论,但不一定清楚道理,所以本课的设计意图不在于了解,而在于验证,让学生在课堂上经历研究问题的过程是本节课的重点。四年级的学生已经初步具备了动手操作的意识和能力,并形成了一定的空间观念,能够在探究问题的过程中,运用已有知识和经验,通过交流、比较、评价寻找解决问题的途径和策略。

【学习目标】

1.通过测量、剪、拼等活动发现、探索和发现“三角形内角和是180°”。

2.学会根据“三角形内角和是180°”这一知识求三角形中一个未知数的度数。

3.在课堂活动中培养学生的观察、归纳、概括能力和初步的空间想象力。并通过动手操作把三角形内角和转化为平角的探究活动,向学生渗透“转化”数学思想。

4.使学生体验成功的喜悦,激发学生主动学习数学的兴趣。

【教学重点】

探索和发现“三角形的内角和是180°”。

【教学难点】

运用三角形的内角和解决实际问题。

【教学准备】

教师:多媒体课件、剪好的不同类型的三角形。

学生:量角器、剪刀、剪好的不同类型的三角形。

【教学过程】

一、创设情景,引出问题

1.猜谜语。

师:同学们,你们喜欢猜谜语吗?今天老师给你们带来了一则谜语。请同学们读一下(课件出示谜语)。

师:打一几何图形。猜猜看!

学生猜谜语。

根据学生的回答,课件出示谜底。

师:真是三角形,同学们的反应真快!

2.复习三角形的内容。

其实,三角形我们并不陌生,它是一种特别的平面图形。关于三角形,你们已经掌握了哪些知识?

指名学生回答。

(当学生回答出三角形有3个顶点、3条边和3个角时,请这名学生到台上分别指出三角形的3个角,并标出角。)

3.引出课题。

师:同学们知道的还真不少,可见你们平时学习很用功。知道吗?其实三角形的这三个角就是三角形的三个内角,而这三个角的度数和就是三角形的内角和。你们知道三角形的内角和是多少度吗?今天这节课就让我们一起走进三角形内角和,探索其中的奥秘。

(板书课题:三角形的内角和)

二、探究新知

1.讨论、交流验证知识的方法。

师:那同学们用什么方法来研究三角形的内角和呢?赶紧商量一下。(同桌交流)

学生汇报:①用量的方法;②用拼的方法;③用折的方法...

2.操作验证。

师:同学们的点子还真多!现在请同学们拿出准备好的三角形,

选1个自己喜欢的三角形,选择自己喜欢的方法进行验证。(或说研究)等研究完了我们再交流,发现了什么,好吗?好,现在开始!

3.学生汇报。

师:如果你们已经完成了,就把你的小手举起来示意老师。老师有点迫不及待了,想赶紧分享一下你们研究的成果。谁先来说?

学生汇报,教师适时板书。

①用量的方法:

指名学生汇报度量的结果,教师板书。(指两名学生汇报)

教师白板演示测量方法,并计算和板书出结果。

教师:同样是测量的方法,有的同学得了180,有的不是180°,为什么会出现这种情况?(指名学生说)

师:可能我们测量的时候会有误差,但是同学们选择比较精确的测量工具,使用正确的测量方法,还是可以得到精确的结果。看来这个办法不能使人很信服,有没有别的方法验证?

②用拼的方法

a.学生汇报拼的方法并上台演示。

我这里也有一个钝角三角形,请两名同学上台演示。

b.请大家四人小组合作,用他的方法验证其它三角形。

c.展示学生作品。

d.师课件展示。

师:我们用量、拼得到了180度,还有什么方法?

③用折的方法

师:还想向同学们请同学们看一看他是怎么折的(课件演示)。

师:刚才我们用量的方法、拼的方法和折的方法研究了锐角三角形、直角三角形和钝角三角形内角和,得出什么结论了?

教师根据学生板书:(任意)三角形的内角和是180度。

④数学文化

师:除了我们这节课大家想到的方法,还有很多方法也能验证三角形的内角和是180°,到初中我们还要更严密的方法证明三角形的内角和是180°。其实,早在300多年前就有一位伟大的数学家,用科学的数学方法见证了任意三角形的内角和都是180度。这位伟大的数学家就是帕斯卡(课件出示帕斯卡),他是法国著名的数学家、物理学家。他在12岁时发现了三角形内角和定律,17时写出了《圆锥截线论》19岁设计了第一架计算机。

三、巩固练习

数学家发现了知识,今天我们也能够总结出知识。你们棒不棒?真厉害,接下来白老师要考考你们。眼睛看好啦!

1.课件出示:我是小判官(对的打“√”错的“×”。)

强调:把两个小三角形拼在一起,问:大三角形的内角和是多少度?

教师:为什么不是360°?学生回答。

2.接下来我要奖励你们一个游戏:《帮角找朋友》

3.求未知角的度数。

师:接下来,利用三角形的内角和我们来解决一些相关的问题吧!

①课件出示第一个三角形,学生尝试独立完成,教师巡视。

教师:刚才,我们利用了三角形的什么?

②教师:如果一个都不知道,或只知道1个角,你能知道三角形各角的度数吗?求出下面三角形各角的度数。

a.我三边相等;b.我是等腰三角形,我的顶角是96°。c.我有一个锐角是40°。

教师:如果我们去求一个三角形内角的度数的时候,首先我们要去观察三角形,找出它的特点,找出它给出的已知角的度数,然后再去计算三角形未知的内角的度数。

四、拓展延伸

师:看来三角形内角和的知识难不倒你们了,我们来一个挑战题。你们敢接受挑战吗?(课件出示四边形)你知道它的内角和是多少吗?指名生回答,并说出理由。同学们,你们能用今天学的知识算出它的内角和吗?

接着让学生尝试求5边形和6边形的内角和。

小结:求多边形的内角和,可以从一个顶点出发,引出它的对角线,这样就把这个多边形分割成了n个三角形,它的内角和就是n个180°

五、课堂总结。

师:这节课你有什么收获?

学生自由发言。

师生交流后总结:知道了三角形的内角和是180度,根据这个规律知道可以用180°减去两个内角的度数,求出第三个未知角的度数。

同学们,只要我们在日常的学习中,细心观察,大胆质疑,认真研究,一定会有意想不到的收获。

六、作业布置

完成教材练习十六的第1、3题。

七、板书设计:

(任意)三角形的内角和是180°

∠1+∠2+∠3=180°

度量剪拼折拼

三角形角的关系教案篇3

教学目标:

1.通过动手实践,自主探索,合作交流发现三角形任意两条边的和大于第三边。

2、能判断给定长度的三条线段是否能围成三角形,能运用三角形三边关系解决生活中简单的实际问题,感受到生活中处处有数学。

3.在探索体验的过程中,能进行简单、有条理的思考。通过学习,发展空间观念,体验成功的喜悦,激发学生学习数学的兴趣。

教学重点:

理解、掌握“三角形任意两边之和大于第三边”的性质。

教学难点:

引导探索三角形的边的关系,并发现“三角形任意两边的和大于第三边”的性质。教学准备:、不同长度纸条若干张、实验表格。

教学过程:

一、 创设情境

1、出示情境图。

师:通过刚才摆三角形,你发现了什么?

(引导学生提出这样的问题:为什么我们用的三张纸条中有两条长的和大于第三条长却没有摆成三角形呢?)

师:通过刚才是实验,我们可以发现三角形三条边在长短上有某种关系,但究竟怎样的三张纸条才能摆成一个三角形?让我们再来做一个实验。

2、 动手实验2:进一步探究怎样的三张纸条才可以摆成三角形。

师:每组同学任意选择下面三组中的任意一组纸条做进一步实验,并完成相应的实验记录。

学生汇报展示:能或不能摆成三角形任意两边的和是否大于第三边

( 1 )不 能4+5=9 4+9>5 5+9>4发现:两边之和有时大于第三边,有时等于第三边,不能摆成三角形

( 2 )不 能6+10>3 3+10>6 3+6<10发现:两边之和有时大于第三边,有时小于第三边,不能摆成三角形

( 3 )能6+7>8 6+8>7 7+8>6发现:任意两边之和大于第三边,能摆成三角形师:对于三角形的三边关系,怎样表达更严密?体会任意两边的'含义。

三、 拓展应用:

1、 说一说老师为什么走中间的这条路最近?

2、 判断:哪一组中的3根小棒可以摆成一个三角形?(单位:厘米)

(1)3,6,9 (2)4,4,10

(学生通过比较任意两边之和是否大于第三边,来判断是否可以围成三角形,教师再让学生讨论交流好方法)

3、解决问题:

师:小明想要给他的小狗做一个房子,房顶的`框架是三角形的,其中一根木条是3分米,另一根是5分米。

(1)第三根木条可以是多少分米?(取整数)

(2)第三边的木条的长度是a分米,那么a的取值范围是( )t;at;( )

四、 回顾反思:

同学们,今天学到了什么知识?你最大的收获是什么?还有哪些不懂的地方吗?

三角形角的关系教案篇4

教学内容

四边形分类p29~30页。

教学目标

1.知识目标:通过观察、比较、分类等活动,了解梯形的特征,进一步认识平行四边形。

2.技能目标:知道长方形、正方形是特殊的平行四边形。

3.情感目标:使学生在学习中学会观察,分析。

重点难点

重点:了解梯形的特征,进一步认识平行四边形;知道长方形、正方形是特殊的平行四边形。

难点:了解梯形的特征,进一步认识平行四边形;知道长方形、正方形是特殊的平行四边形。

教具准备

各种四边形的图片。

教学过程

一、创设情境。

师:看,淘气剪了许多四边形,你能将这些四边形进行分类吗?

学生对图形进行分类后进行汇报。

二、探究新知。

1.认识平行四边形和梯形。

教师展示学生的分类方法,如和课本不一致,引导学生观察智慧老人的分法。

教师总结:

a.两组对边分别平行的四边形叫做平行四边形。

b.只有一组对边平行的四边形叫做梯形。

师:请学生说一说平行四边形和梯形的特征。

如学生说不出平行四边形对边相等,教师可以准备几根小棒。

师提问:你能选几根拼出一个平行四边形吗?你认为应该选择什么样的四条边?

学生进行选择,拼摆。

讨论得出结论:平行四边形每组对边想等。

2.长方形、正方形是特殊的平行四边形。

教师:长方形、正方形是平行四边形吗?

教师引导学生根据特征得出:长方形、正方形是特殊的平行四边形。

3.体会长方形、正方形、平行四边形、梯形、四边形之间的关系。

教师边引导边板书:如果用一个圈把平行四边形都放在里面的话,请你也画一个圈来表示长方形、正方形。如果平行四边形的外面再画一个圈,你觉得这应该是什么?再用一个圈画出梯形的地盘,应该怎么画?试试看。

三、巩固练习。

1.在第30页的点阵图上画出平行四边形、梯形和三角形。

学生独立完成,注意指导学生在画图是,借助点子,将图形画得美观。

2.第30页练一练1题分类。(剪下课本附页中的图形。)

学生独立完成,集体订正。

四、课堂总结。

你对这几种图形又有哪些新的认识?(学生发言)

五、课堂拓展。

如果把一个梯形,一条边不断地变小,一直小到一个点,就是什么形状?一直大到和下底相等,就是什么形状?

六、作业设计。

1.教材30页3题。

2.教材30页4题。

三角形角的关系教案篇5

【教材分析】

本课是在学生初步了解三角形定义的基础上,让学生进一步理解三角形的特征,即“三角形任意两边之和大于第三边”,加深学生对三角形的认识,同时也为今后学习三角形和四边形的联系和区别打下基础。三角形边的关系的定理主要提供了判断三条线段能否组成三角形的依据,熟练灵活地运用三角形三边关系有助于提高学生全面思考问题的能力。教材积极创设了动手操作的情境,力求让学生在活动中感知、体会并进行归纳总结。同时,也让学生对演绎推理和反证法有初步的了解。

这节课力求让学生在动手操作与引申思考中,经历“发现问题—总结规律—解决问题—实践应用”的过程,真正放手让学生去“做数学”,经历“数学化”的过程。

在学具的准备上,运用了胶片上画线段的方法来摆三角形,尽可能地减小了操作中的误差。

【学生分析】

对于三角形,学生并不陌生,通过前面的学习,学生已经初步认识了三角形,知道三角形有三条边、三个顶点和三个角,以及三角形稳定性的知识,这些都是学生进一步进行学习的基础。学生乐于动手,喜欢实践,并在前几年的学习中,掌握了一定的实践方法和思考方式,同时比较善于发现和总结,这也将为本节课的学习做好铺垫。

【教学过程】

一、创设生活情境,揭示课题

(课件出示:教师上班路线图)

师:老师从家里出发到学校上班有三条路可以走,你认为老师走哪条路近呢?

生1:我认为老师走第二条路近,因为第一条和第三条路都是弯的,只有第二条路是直的。

生2:我也认为老师走第二条路近。

师:是啊,弯来弯去的线总是比直的线要长。现在老师请同学们再仔细观察,连接老师家、公园和学校三个地方,接近一个什么图形?连接老师家、国贸大厦和学校这三个地方,又接近一个什么图形?

生:三角形。

师:老师走一、三两条路就好比走了三角形的两条边,而走第二条路好比走了三角形的一条边,三角形的三条边有什么关系呢?我们是否可以从三角形的三条边的关系来解释老师上班走哪条路近的问题呢?这节课,我们就来研究三角形边的关系。(板书课题:三角形边的关系)

二、开展探索活动,体验边的关系

1.发现问题。

师:老师手里有一根吸管,想把它随意剪成三段,什么是随意呢?

生1:随自己的意思,可长可短。

师:把这根吸管随意剪成三段,能围成三角形吗?

生2:能。

生3:不一定。

师:每人从材料袋中,取出一根吸管来剪一剪、围一围。

(学生活动,教师巡视了解情况,有的围成,有的围不成)

师:看来不是随意剪成三段就能围成三角形的,这里面肯定有学问,大家想研究吗?(想)那谁愿意把没围成的作品提供给大家研究?(一学生将作品呈上)

师:有谁觉得能围成,想来帮帮他?(一学生上来帮助,教师也帮助围,还是围不成)

师:怎么会围不成呢?是什么原因?请同桌同学小声商量一下。

生4:因为其中的两根吸管太短了,再长一些就围得成了。

师:同学们认为两根吸管的长度和小于第三根所以围不成,那么,两根吸管的长度和多长时才可以围成呢?

2.进行猜想。

生1:我认为当两根吸管的长度和等于第三根时才可以围成。(板书)

生2:我认为当两根吸管的长度和大于第三根时才可以围成。(板书)

生3:我认为要随便的两根吸管的长度和都大于第三根时才可以围成。(板书:随便)

师:这些都只是同学们的猜想,这些猜想是否正确呢?当我们在学习中遇到这种情况时,可以怎么办?

生:可以做实验来验证一下。

3.实验验证。

师:在做实验前,老师还有些不放心,“两根吸管的长度和等于第三根”这个实验的材料怎么找呢?

生1:可以量一量,剪一剪。

生2:把一根吸管对折剪开,其中的一段再平分成两段。

生3:拿三根一样长的吸管就可以了。

师:这样的话,两根吸管的长度和还等于第三根吗?

生4:大于第三根,可以用做第二个实验的`材料。

师:现在就请同桌合作完成实验,特别注意是否要“随便的两根”。

(学生实验,教师巡视指导)

师:实验结束了,我们来开个实验结果发布会吧!谁愿意第一个上来发布实验结果。

生5:我们做第一个实验。先挑选两根一样长的吸管,并把其中一根平均剪成两段,我们发现两根吸管的长度和等于第三根时不能围成三角形。(学生边说边演示围的过程)

师:大家的实验结果与他们一样吗?

生6:我们的实验结果是:两根吸管的长度和等于第三根时能围成三角形。(学生上台演示围的过程)

生7:老师,他们的实验材料有问题,两根吸管的长度和已经大于第三根了,所以这个实验的结果是错的。

师:数学是非常严谨的学科,来不得半点马虎,我们一定要认真仔细。

生8:老师,我们的实验结果也是围成的。(学生上台演示围的过程)

师:对于他们这一组的实验情况,同学们有什么想说的吗?

生9:老师,他们在围的时候,两根吸管的端点根本没有接触,其实是没有围成三角形。

师:老师请你们再试试好吗?(这一组学生按要求再试了一次,果然围不成)

师:现在你们想重新发布实验结果吗?

生10:两根吸管的长度和等于第三根时不能围成三角形。

师:虽然这组同学的实验有问题,但他们敢于发表自己的观点来解决疑问,学习就是要有这种精神才会进步。

师:谁来发布第二个实验结果?

生11:当两根吸管的长度和大于第三根时可以围成三角形。(学生边说边演示围的过程,大部分学生表示赞同)

生12:我觉得你说的不对。这是我开始没有围成三角形的那三根吸管,其中一根短的吸管与一根长的吸管的长度和也是大于第三根的,可是却围不成三角形。所以,要随便的两根吸管的长度和都大于第三根时才可以围成三角形。(全班学生都赞同他的想法)

师:你想问题很全面,老师和同学都很佩服你,真了不起!现在谁能把实验的结果再来发布一下?

生13:任何两根吸管的长度和大于第三根时,可以围成三角形。

师:我们可以把“随便”、“任何”说成“任意”。(板书:任意)

4.得出结论。

师:那么,对于已经围成的三角形,是否意味着任意两边的和都大于第三边呢?请大家拿出课前画好的三角形量一量、算一算。

生1:我量出三角形的三条边分别是3厘米、2厘米、2.6厘米,经过计算发现,三角形任意两边的和都大于第三边。

三角形角的关系教案篇6

?三角形边的关系》是在学生了解了三角形的一些基本特征的基础上学习的,学生虽然知道了三角形有三条边,但三角形“边”的研究却是学生首次接触,短短的四十分钟之内,要让学生从抽象的几何图形中得出三角形三边的关系这个结论,并加以运用,并非易事。开课前我先观摩网上优秀视频,学习优秀案例,用两天的时间准备教案,在备课的过程中,我一直在思考,到底该如何引导“三角形任意两边之和大于第三边” 。因此,教学中,我让学生亲身经历了探究的过程,围绕“怎样的三根小棒能摆成一个三角形?”这个问题让学生自己动手操作,发现有的能围成,有的不能围成,再次由学生自己找出原因,为什么能?为什么不能?初步感知三条边之间的关系,接着重点研究“能围成三角形的三条边之间到底有什么关系?”虽然本节课能达到预期的效果,但在实验活动中,存在着许多问题。因此,我对这节课做了如下的反思:

一、关注学生亲身经历

本节课的一个突出特点就在于学生的实际动手操作上,具体体现在以下两个环节:一是导入部分,通过联系生活,激发兴趣。出示一组实物图片,使学生初步体验三角形在生活中的广泛应用,激发学生的学习热情,调动学生学习的积极性。二是动手操作部分,学生用手中的小棒来摆三角形,并且做好记录。这个过程必须得每个学生亲自动手,在此基础上观察、发现、比较,从而得出结论。苏霍姆林斯基曾说:“在人的心理深处都有一种根深蒂固的需要,这就是希望自己是一个发现者、研究者和探索者。而在儿童的精神世界中,这种需要特别强烈。”教学中,我有意设置这些实际动手操作、共同探讨的活动,既满足了学生的精神需要,又让学生在浓烈的学习兴趣中学到了知识,体验到了成功的快乐。这个实验活动过程中也存在着很多的不足,例如:让学生到展示台展示准备得不够充分,只是简单的叫几位学生去展示,没有走到学生中去了解实验结果,感觉只是停留在表面。怎样的三根小棒才能围成一个三角形呢,学生实验后,我只是出示一个例子就下结论,评课后,通过老师的点评,让我明白了,一个实验活动要有两到三个例子,才能下结论。

二、练习设计层层深入

评价一节数学课,最直接有效的方式就是通过练习得到的反馈,而学生之间参差不齐,为了能兼顾全班学生的整体水平,练习题我设计层层深入,由浅入深。1.判断三组小棒能否围成三角形。2.用同样长的3根、4根、5根、6根小棒能不能摆成一个三角形?第1小题我要求学生除了判断能不能摆成三角形?还要求学生们写出为什么能围成一个三角形,为什么不能围成一个三角形的理由。从学生的反应,可以看出正确率很高,让我惊讶的是,他们理由说的很棒,只要比较两根较短的小棒是否大于那根长的小棒就能知道是否能围成一个三角形。有的学生用算式表示(如:3+4>6 )等,学生们能懂得把所学的知识转化为自己的能力来解决问题。第2个小题,我让学生们通过动手操作、猜想、实验、验证及同桌互相讨论等活动,来解答用3根同样长的小棒能不能摆成一个三角形,若能摆成,它是一个什么样的三角形。学生都摆出了一个等边三角形出来。接下来再分别动手操作4根、5根、6根同样长的小棒是否能摆成一个三角形。若能摆成,它是一个什么样的三角形。通过这个练习,培养了学生的自主探索、勇于实践、敢于发现问题,从而在动手能力与同伴交流的过程中得出结论的好品质。

三角形角的关系教案篇7

教学目标:

1.理解两点之间线段最短,理解三角形任意两边的和大于第三边。

2.经历拼一拼、移一移等操作活动,探索、归纳出三角形三边的关系,培养学生自主探索,合作交流、抽象概括能力,积累活动经验。

3.渗透模型思想,体验数据分析,数形结合方法在探究过程中的作用。

教学重点:

理解三角形任意两边之和大于第三边。

教学难点:

理解两条线段和等于第三条线段时不能围成三角形,理解任意二字的`含义。

教学资源:

小棒、多煤体课件。

教学过程:

同学们好,这节课我们研究三角形三边的`关系。

一、 创设情境,导入新课。

1. 小明上学,你猜他会走哪条路?这条路与其他两条路相比有什么特点?(中间这条路直直的,是一条线段,上面哪条路是两条线段组成的,下面这条路是一条曲线。)小明为什么走中间这条路?(这条路最短)课件演示:三条连线比较长短(师:两点之间所有连线中线段最短,这条线段的长度,叫做两点间的距离。)

2.实物展台上放三根小棒: ,现在这样围成三角形了吗?谁来围一围?刚才没围成三角形,现在就围成了,围成三角形的关键是什么?(每相邻两条线段的端点相连)

3.如果从三根小棒中拿走一根,剩下的两根能围成三角形吗?能想办法变成三小棒吗?(把一根小棒剪成两段,变成三根小棒)把两根小棒变成三根,就一定能围成三角形吗?这节课我们一起研究三角形边的关系。板书课题;三角形三边的关系。

二、操作演示,观察发现。

1.(课件出示四根小棒)有四根小棒6、5、3、2(单位:厘米)

2.任意取三根摆一摆三角形,会有几种情况?

3.请同学们动手摆一摆,并填写好学习单,小组交流有什么发现?。

4.组织全班交流:学生边说,老师边课演示。第一种情况

6+5>3,6+3>5,5+3>6;第二种情况:6+5>2,6+2>5,5+2>6;第三种情况:6+3>2,6+2>3,3+2<6;第四种情况;5+3>2,5+2>3,3+2<5。三角形任意两边的和大于第三边。

三、实践应用,拓展延伸。

在能拼成三角形的各组小棒下面画(单位:cm)

四、反思总结,自我建构。

这节课你有什么收获?(三角形任意两条边的和大于第三边。)

这节课我们就研究到这儿,同学们再见!

三角形角的关系教案篇8

教学内容:

教材分析:

?三角形边的关系》是四年级下册第二单元认识图形中的第四课内容,是小学 “空间与图形”领域中新增添的内容,是在线段、角、顶点、三角形分类等三角形知识学习的基础上的延伸。为今后学习三角形面积和应用提供了重要条件。

学生分析:

从接触三角形以来,都是针对已成立的三角形进行学习和研究的,从未涉及到:“两边之和小于第三边的三条线段不能围成三角形”这一陌生领域。在生活实际中缺乏鲜活实例和经验,固而学生在学习该段内容时,会有与生活实践相割裂的感觉。学生对较抽象的问题无法明白其含义。所以这段知识的理解对学生来说有相当的难度,学生不够自信,没有勇气参与,学习的兴趣和主动性不足,无法完全独立的进行探究活动。需要老师以学生体验过程为主,以感知探索的方法为重,给予指导。

教学目标:

1、知识与技能:使学生发现并理解三角形任意两边之和大于第三边,并能运用规律解决生活中的实际问题。培养归纳、概括能力和推理能力。

2、过程与方法:让学生通过动手实践,分析数据,体验探索和发现三角形边的关系的过程,培养学生发现问题的意识及提出问题的能力,积累探索问题的方法和经验。

3、情感态度价值观:提高学生自主探索和合作交流的能力。激发对数学的探究兴趣,引导学生树立自己探索真理的勇气和信心,享受成功的喜悦。

教学准备:

多媒体课件、实物投影、小棒若干。

教学过程:

一、导入

1、师:同学们,最近几天咱们一直在围绕哪种图形进行学习?

(生:三角形)。

师:什么是三角形?

(生:由三条线段首尾相接围成的平面图行就是三角形。)

师:围成三角形的三条线段是三角形的什么?

(生:边。)

2、解释课题

今天咱们就来共同研究三角形的三条边之间有什么奥秘。

二、探究活动

1、用4组不同长度的小棒围三角形,初步感受能否摆成三角形与小棒的长度有关。

①师:刚才咱们说了“由三条线段首尾相接围成的平面图行就是三角形”,那么如果用小棒代替线段来围三角形,得用几根小棒?

师:是不是只要给你3根小棒你就一定能围成一个三角形?

师:怎么验证咱们说得对不对呢?

(生:实际动手摆一摆、围一围。)

师:那好,课前咱们都准备了几组长度不同的小棒,接下来咱们就来摆一摆。在动手之前咱们先来一起看一看“活动要求”。

②课件出示“活动要求”。

学生自读活动要求,师:清楚活动要求了吗?开始吧!。

③学生动手摆一摆并完成活动记录表。

④汇报活动结果。

师:通过刚才的活动,是不是只要是3根小棒就一定能摆成三角形?(生:不一定。)

师:在刚才的4组小棒中,那几组能摆成三角形?哪几组摆不成三角形?你觉得能否摆成三角形跟小棒的什么有关?(生:小棒的长度。)

2、进一步探究怎样的3根小棒能摆成三角形。

①课件分别演示4组小棒摆三角形的过程。

②两根短小棒长度之后小于长小棒时摆不成三角形。

出示第3组小棒(2,3,6)。

师:这3根小棒能摆成三角形吗?最后会出现什么情况?(2厘米和3厘米的两个短小棒与6厘米的小棒重合并且没能首尾相接。)

师:为什么这3根小棒摆不成三角形?(生:小棒太短了。)

师:为什么太短了?(生:2厘米加3厘米都不到6厘米,有缺口,接不上。)

师板书:2+3t;6

师:这3根小棒能摆成三角形吗?(1,2,5 2,2,8)

师:咱们来观察一下这几组小棒之间的关系,什么情况下的3根小棒摆不成三角形?

归纳:两根短小棒长度之后小于长小棒时摆不成三角形。

③两根短小棒长度之后等于长小棒时摆不成三角形。

师:既然你们觉得小棒太短了围不成三角形,那我现在把2厘米的小棒延长1厘米,这时就成了第4组小棒(3,3,6)的长度,你们刚才摆成三角形了吗?

课件演示。

师:出现了什么情况?(3厘米和3厘米的两个短小棒与6厘米的小棒刚好重合。)

板书:3+3=6

师:那么3,5,8这3根小棒能摆成吗?5,6,11呢?

师:那么怎样的3根小棒也摆不成三角形呢?

归纳:两根短小棒长度之后等于长小棒时也摆不成三角形。

④小结

师:咱们能不能用一句话概括摆不成三角形的两种情况?

生:两根短小棒长度之后小于或等于长小棒时摆不成三角形。

⑤探究怎样的3根小棒能摆成三角形。

师:现在咱们知道了两根短小棒长度之后小于或等于长小棒时摆不成三角形,那大家能不能大胆猜测一下,怎样的3根小棒能摆成三角形?

生:两根短小棒长度之后大于长小棒时能摆成三角形。

师:是这样吗?咱们再来看看能摆成三角形的那两组小棒的长度,算一算是否验证了咱们的猜想。

学生算一算验证猜测。

师:那么怎样的3根小棒能摆成三角形?

归纳:两根短小棒长度之后大于长小棒时能摆成三角形。

3、进一步探究三角形边之间的关系

①师:这是咱们摆成三角形的那2组小棒。当我们用小棒摆成三角形后,小棒相当于三角形的什么?(生:三角形的边。)

②师:请你算一算,比一比。

学生同桌两人交流。

个别学生汇报计算结果。

③师:那么三角形的三条边之间有什么关系?

学生思考。

④归纳总结

三角形任意两边之和大于第三边。(板书)

师:这就是三角形边之间的关系。刚才咱们是从这两个三角形发现的这个结论。现在咱们利用课前画的任意三角形来算一算,看是不是任意一个三角形都具备这样的规律。

(学生计算验证)

三、随堂练习

师:通过刚才的学习我们知道了三角形任意两边之和大于第三边的规律。但学习的最终目的是学以致用。下面陈老师准备了一些习题,敢不敢试一试?

1、淘气从家到学校有两条路可以走。从下图中你能看出那条路近吗?用今天所学的知识说说你的理由。

?三角形边的关系》教学设计

2、完成“练一练”1-3

四、布置作业

练一练。4

五、全课小结