教案能够帮助我们达到教学的目标,教案帮助我们有条不紊地授课,下面是团团范文网 小编为您分享的和差问题教案通用8篇,感谢您的参阅。
和差问题教案篇1
[教学内容]
小学数学国标版六年级下册教科书p71解决问题的策略
[教学目标]
1、学生初步学会运用转化的策略分析问题,灵活确定解决问题的思路,并能根据问题的特点确定具体的转化方法,从而有效地解决问题。
2、学生通过回顾曾经运用转化策略解决问题的过程,从策略的角度进一步体会知识之间的联系,感受转化策略的应用价值。
3、学生进一步积累运用转化策略解决问题的经验,增强解决问题的策略意识,主动克服在解决问题中遇到的困难,获得成功的体验。
[教学重点]
理解转化策略的价值,丰富学生的策略意识,会用“转化”的策略解决问题。
[教学难点]
会用“转化”的策略解决问题。
[教学具]
每生印一张例1的方格纸/学生准备剪??
[教学过程]
一、故事引入,创情激思。
有一次,爱迪生把一只灯泡交给他的助手阿普顿,让他计算一下这只灯泡的容积是多少。阿普顿是普林顿大学数学系高材生,又在德国深造了一年,数学素养相当不错。他拿着这只梨形的灯泡,打量了好半天,又特地找来皮尺,上下量了尺寸,画出了各种示意图,还列出了一道又一道的算式。一个钟头过去了。爱迪生着急了,跑来问他算出来了没有。“正算到一半。”阿普顿慌忙回答,豆大的汗珠从他的额角上滚了下来。“才算到一半?”爱迪生十分诧异,走近一看,哎呀,在阿普顿的面前,好几张白纸上写满了密密麻麻的算式。“何必这么复杂呢?”爱迪生微笑着说,“你把这只灯泡装满水,再把水倒在量杯里,量杯量出来的水的体积,就是我们所需要的容积。”
“哦!”阿普顿恍然大悟。他飞快地跑进实验室,不到1分钟,没有经过任何运算,就把灯泡的容积准确地求出来了。
提问:听了这个故事,同学们受到了哪些启发呢?
小结:今天我们也要学习爱迪生和他的助手阿普顿,巧妙地运用一定的策略来解决一些陌生的实际问题,今天我们要学习的内容是“解决问题的策略”(四年级:列表法、还原法;五年级:列举法、还原法;六年级:替换法。)
二、合作交流,探究策略。
1.出示例1
师:首先请大家欣赏2个平面图形,以前我们学过吗?生:没有
师:你觉得它们像什么呢?(生发挥想象力回答,但要说明的是平面图形)
2.引导交流
师:请大家仔细观察这两个图形,它们的什么可能相等?生:面积
师:怎样比较这两个平面图形的面积?谁来说说看。
生:可能说“数方格/折剪拼移转”(如学生讲到数方格,老师要注意引导学生把方格补好)
师:好,现在就请大家拿出手头的图形,同桌协商选用哪种方法,然后分好工,每人完成一个平面图形的操作,然后放在一起验证一下。(同桌操作,教师巡视,并指导。)
3.指导验证。
师:验证下来,发现,这两个平面图形的面积确实相等的同学学举手!
你们组是怎么想的?为什么这么想?指名回答。
学生说想的过程,并投影出示学生的作业纸。(生可能回答上半圆平移下来就是下半圆,他们的面积吻合;“花瓶”突出来的半圆就是瓶口凹下去的半圆,只要分别把他们旋转180度就可以了)
师表扬。
师演示刚才学生说的过程。
师:这样旋转和平移后都变成了什么图形?
生:长方形。
师:变成长方形后面积确实————相等!为什么?
生:长和宽一样,所以面积一样。
(长是5格,宽是4格,它们的面积是相等的,都是20格。)
师再次演示变化过程,提问:在2个图形变化的过程中,他们什么不变?(面积)都把他变成了什么图形的面积?生:长方形。
有没有用“数的方法”?
师小结:刚才我们为了更好的比较两者的面积,运用了解决问题的一个什么策略呢?是的,是把两个未学过的图形(复杂繁琐的)转化成已学过的(简单的)两个面积相同的长方形来比较的,这就是我们今天要学习的解决问题又一个策略——转化。(板书:转化)
4.出示练一练。
师:下面,我们继续看一组图形:出示p72练一练。
生独立完成后,小组交流。(解题关键:平移前后周长不变)
集体交流校对方法,并演示。
5.回顾知识,体验转化
(1)师:同学们,其实“转化”的策略并不神秘,在我们以前图形学习中就曾经很多次运用了“转化”的策略,你能回想出哪些呢?
同学们合作交流,将自己思考的内容在组内交流,验证自己的想法正确与否,同时从别人的发言中丰富自己的认识。指名回答,生可能会说:
推导三角形公式时,把三角形转化成平行四边形。
推导梯形时把梯形转化成平行四边形。
推导圆面积时,把圆面积转化成长方形。
在学生说的过程中请学生说说推导的过程,并相应演示推导过程。
(2)我们除了在图形变化中运用转化,在计算中也同样适用。计算小数乘法时把小数乘法转化成整数乘法,计算分数除法时把分数除法转化成分数乘法等等。
若学生不能说出算理的转化过程,师先出示1.25*7.8=?1/7除以2/9是多少,让学生在算的过程中再次体会转化的重要性
然后出示试一试:计算1/2+1/4+1/8+1/16
师:(1)这些分数分别表示什么意思?生根据分数的意义回答,并强调单位“1”相同。
(2)相邻的分数是什么关系?(后一个是前一个的1/2)
师我们一起来画图表示看看。师根据题目依次画图。
师:你能运用“转化”的策略来解决这一问题吗?学生看图解答。
指名回答。116=15/16(如果学生回答不出,师提示:求阴影部分,空白部分又是多少呢?)
比较:你认为哪种方法更简便?他是如何进行转化的?
如果再添一个分数+1/32呢?
(3)小结:“转化”中一种常见、极其重要的解决问题的策略。在以后的学习、生活、工作中碰到问题时,可以积极地使用“转化”策略来解决。
三、拓展运用,提升策略。
1、师:下面,我们就来比一比,赛一赛,看看谁的转化策略用得好?
2、请大家在书上完成练习十四的1,2,3,然后集体校对,进行星级评定(合计5道,五星级评评定)。
第1题:
(1)学生数一数,得出结果。(15场)
(2)交流简便思路,学生最初可能有两种情况。
生1:用“顺加”的方法:8+4+2+1=15场。
生2:用“倒减”的方法:16-1=15场
对于第二种方法,学生可能只是猜测,需要通过举例去证明。
(3)如果有64支球队参加比赛,产生冠军要比赛多少场?
学生独立完成解答,后汇报。
(4)教师讲授:16支球队中只有1支球队是冠军,其他15支球队都要先后被淘汰,所以一共要进行16-1=15(场)比赛。照此类推,64支球队参加比赛,产生冠军要进行64-1=63(场)比赛。
第2题:(演示直接校对)追问:怎么想到转化的方法的?
第3题:(重点讲评八卦图)
已知该八卦图的半径是五厘米,求红色部分的周长是多少?
学生解答(思路:转化成2个圆的周长)
四、课堂小结
通过本节课的学习你有什么收获?(“转化”随时随地都在我们身边)在今后的学习、生活中,你愿意运用转化的策略吗?为什么?
生回答出示:
学习数学的过程就是不断转化的过程。
复杂转化为简单,陌生转化为熟悉,
抽象转化为具体,未知转化为已知。
掌握转化的策略,对学好数学至关重要。
多位数学家说过:“什么叫解题?解题就是把题目转化为已经解过的题。
用转化的策略解决问题:?----→!
师小结:当然,有解决问题时,要善于从不同的角度灵活地分析问题,这样有利于我们想到合理的转化方法!
五、课堂作业
1、练习十四第3题(1)
2、练习十四第4题:有三堆围棋子,每堆60枚。第一堆黑子与第二堆的白子同样多,第三堆有1/3是白子。这三堆棋子一共有白子多少枚?
六、板书设计:
解决问题的策略——转化
?----→!
s三角形——s平行四边形
s圆形——s长方形
小数乘法——整数乘法
分数除法——分数乘法
和差问题教案篇2
教材分析:
这部分内容是在学生学过分数应用题的解答和百分数的意义、百分数和分数、小数的互化的基础上进行教学的。这部分内容主要教学求一个数是另一个数的百分之几的应用题。这种应用题与求一个数是另一个数的几分之几的应用题相同,但程度上有所加深。这是因为,分数和百分数都可以表示两个数的比。所以,百分数应用题的解题思路和方法与分数应用题大致相同。解答百分数应用题,既可以加深对百分数的认识,又加强了知识间的联系。为了加强百分数的应用,教材还在例2之后列举了小麦的出粉率、产品的合格率、职工的出勤率等几个工农业生产和统计工作中经常用到的计算公式,并让学生说说还有哪些求百分数的例子。这样既扩大了学生所学的知识范围,又能通过练习加深对百分数的认识,同时也渗透了概率统计思想。
学情分析:
学生以前学过求一个数是另一个数的几分之几的分数应用题,学习本节知识时只要引导学生发现百分数应用题与分数应用题分析过程一致的地方,即明确以谁作单位1,确定了谁和谁比,根据求一个数是另一个数的几分之几的解答方法,仍用除法计算,只是结果要化成百分数。
教学目标:
1、使学生加深对百分数的认识,能理解发芽率、出粉率、合格率等这些百
分率的含义。
2、能用求一个数是另一个数的几分之几的方法解答求一个数是另一个数
的百分之几的的百分之几的应用题,解决生活中一些简单的实际问题。
3、培养学生的知识迁移能力和数学的应用意识。
教学重点:解答求一个数是另一个数的百分之几的的百分之几的应用题。
教学难点:对一些百分率的理解。
教具准备小黑板、口算卡片
参考的有关数据:
稻谷出米率约72%小麦出粉率约85%棉子出油率约14%花生仁出油率约40%油菜子出油率约38%芝麻出油率约45%蓖麻子出油率约45%
教学过程
第一课时
活动(一)创设情境,提出问题:补充(点评)
1、口算比赛:(时间:1分钟)
5/6―1102/91―15154/3
5/8+31248+15+145
想一想,根据自己的口算情况,你能提出什么数学问题?(做对的题数占总题数的几分之几?做错的题数占
总题数的几分之几?)
2、学生根据自己的口算情况口答做对的题数占总题数的几分之几?做错的题数占总题数的几分之几?
3、提出问题:能否将做对的题数占总题数的几分之几的分数应用题改成一道百分数应用题呢?补充(点评)
(将做对的题数占总题数的几分之几改成做对的题
教学设计
校对并让学生说说自己的口算情况,
补充(点评)、
数占总题数的百分之几)
活动(二)相互合作,探究问题:
(一)初步感知
1、学生尝试解答各自的做对的题数占总题数的百分之几和做错的题数占总题数的百分之几的问题。
2、小结:求一个数是另一个数的百分之几的百分数应用题与求一个数是另一个数的几分之几的分数应用题解法相同,关键是找准单位1,所不同的是,求一个数是另一个数的百分之几的百分数应用题计算的结果要化成百分数。
(二)共同探讨
1、师:百分数在日常生活、工作中应用很广泛,如前面说到的你们在口算比赛中,各自做对的题数占总题数的百分之几这是你在这次口算比赛中的正确率,做错的'题数占总题数的百分之几就是错误率。像这些正确率、错误率等我们通常称作百分率。你能举一些我们日常生活中的百分率的例子吗?
2、学生举一些日常生活中的百分率的例子,举例的同时要让学生说说他所举百分率的意义。
板书学生所举的百分率及其含义。如:
合格的产品数发芽的个数
产品的合格率=────────100%发芽率=───────100%
产品总数种子的总数
3、尝试解答例题:
(1)出示课本例1和例2的条件:
例1六年级有学生160人,已达到《国家体育锻炼标准》的有120人,?
例2某县种子推广站,用300粒玉米种子作发芽实验,结果发芽的种子有288粒。?
(2)完成第113页的做一做
活动(三)运用知识,解决问题:
1、口答:
(1)2是5的百分之几?5是2的百分之几?
(2)用1000千克花生仁榨出花生油380千克,说出求花生仁出油率的公式,并算出花生仁的出油率。
2、判断:
(1)学校上学期种的105棵树苗现在全部成活,这批树苗的成活率是105%。
(2)六年级共98名学生,今天全部到校,六年级今天的学生出勤率是98%。
(3)25克盐放入100克水中,盐水的含盐率是25%。
3、课堂作业:
1、我国鸟类种数繁多,约有1166种。全世界鸟类约有
8590种。?
2、根据我班同学的情况,先编一道百分数应用题,在小组内交流,然后解答。补充(点评)
活动(四)、全课总结
1、学生谈谈学习本课后有什么收获,说说解答一个数是另一个数的百分之几的百分数应用题的关键是什么?方法是怎样的?这类应用题与求一个数是另一个数的几分之几的分数应用题有什么关系?
2、学生谈谈今天所学的知识在我们的日常生活中有什么用?
课堂总结
学生说说解答求一个数是另一个数的百分之几的百分数应用题的关键是什么。
一、补充练习:
1、判断题
①五年级98个同学,全部达到体育锻炼标准,达标率为98%.
②今天一车间102个工人全部上班,今天的出勤率是102%
③甲工人加工103个零件,有100个合格,合格率是100%.
2、应用题
①六年级一班有学生50人,今天出席48人.求六年级一班今天的出勤率.
②在一次数学测验中,六年级一班同学一共做了400个题,结果有错误的题16个,求错误率.
二、作业:结合练习二十九第6题进行课外调查。
和差问题教案篇3
教学内容:
苏教版课标本第十二册7172页、试一试和练一练、练习十四的第13题。
教学目标:
1.使学生初步学会运用转化的策略分析问题,灵活确定解决问题的思路,并能根据题目的特点选择具体的转化方法,从而有效地解决问题。
2.使学生在解决问题的过程中,感受转化策略的应用。
3.使学生进一步积累运用转化策略解决问题的经验,感受转化的多样性。增强解决问题时的转化意识,提高学好数学的信心。
教学重点:
感受转化策略的价值,初步掌握转化 的方法和技巧。
教学难点:灵活运用转化的策略解决问题。
教学准备:
多媒体课件、作业纸。
教学过程:
一、教学例1,揭示转化的策略
1.出示
师:这是什么图形?(长方形)图中每个小方格的面积都是l平方厘米。
如何求出这个长方形的面积?(54=20(平方厘米))
2.出示
师:你能求出这个图形的面积吗?怎样思考?(把左边的三角形剪下来,平移到右边
去,使原来的图形转化成一个长方形)演示转化过程。(板书:转化)师:转化成的这个长方形与原来的图形面积有什么关系?(面积相等)
(评析:用较为简单的`图形过渡,把它转化为面积相等的长方形。孕伏转化的策略,使学生初步感受转化的作用)
3.出示例1的两幅图,(作业纸)
师:这两个图形你们学过吗?
我们能用已有的面积公式直接计算它们的面积吗?它们的面积相等吗?有什么办法来比较它们面积的大小呢?
(1)同桌讨论。(数方格,转化(割补))
(2)动手操作?
(3)交流自己所用的转化方法,鼓励学生采用多种转化的方法:(如果有学生提出数方格,则提示他们进一步想想不完整的方格如何处理)重点让学生说一说如何将两个图形转化成已学过面积计算公式的图形。然后课件演示。
师:你是怎样进行转化的?
(第一幅图:先割下上面的半圆,再将这个半圆向下平移5格,就转化成了54的长方形了;第二幅图:先把下半部分凸出来的两个半圆割下来,再绕直径的上端旋转180度,补到图形上半部分凹进去的地方,于是这个图形也转化成54的长方形)
师:转化后的两个图形的面积什么关系?(都等于20格)
师:你怎么想到把图形分割后重新拼合进行转化的?(原图复杂,转化后的图形容易计算面积,而且转化前后图形的面积不变)(板书:复杂简单)
(4)总结评价。
师小结:刚才我们为了比较两个图形的面积,先把它们转化成长方形,这就是我们今天要学习的解决问题的策略转化。(板书:解决问题的策略)
(评析:转化的目的是为了把困难的问题化为容易的问题,或者把复杂的问题化为简单的问题,利用动画使转化的过程更加直观,更加便于理解,学生动手操作亲身体验了转化的好处)
二、回顾转化实例,感受转化的价值
1.回顾以往转化的经验。
师:其实在我们以前的学习中,已经多次运用过转化的策略,想一想,在哪些地方用到了这种策略?(可适当提示不同领域的转化)
生可能会说:
a、 面积或体积公式的推导过程中用过形的转化。(平行四边形长方形;三角
形、梯形平行四边形;圆长方形;圆柱长方体;圆锥圆柱)
b、 计算中用过数的转化(异分母分数加减法同分母分数加减法;小数乘除法整
数乘除法;分数除法分数乘法)
c、简便计算中用过的式的转化。
2、初步感受转化的价值。
师:这些运用转化的策略解决问题的过程有什么共同点?(化繁为简、化难为易,化陌生的新问题为熟悉的问题)
板书:新问题熟悉的问题
师:以后你再遇到一个陌生的问题时,你会怎样想呢?
(评析:学生曾经多次运用转化的策略学习新知识,引导学生对这些过程进行回忆,从策略的角度重建相关知识的联系,有利于他们理解转化的共同点)
和差问题教案篇4
教学目标
1.通过创设问题情景,使学生在解决简单的实际问题的过程中,学会用“倒过来推想”的策略寻求解决问题的思路,并能根据具体的问题确定合理的解题步骤,从而有效地解决问题。
2.通过动手实践、自主探索、合作交流等学习活动,使学生在不断反思的过程中,进一步发展分析、综合和简单推理的能力。
3.通过对实际问题的探索,使学生进一步积累解决问题的经验,感受“倒过来推想”的策略对于解决特定问题的价值,获得解决问题的成功体验。
重点难点
重点是:体会适合用“倒过来推想”的策略来解决的问题的特点,学会用“倒过来推想”的策略解决问题的思考方法,能正确合理地运用倒推法进行问题解决实际生活问题。
难点是:根据具体的问题确定合理的解题步骤,从而有效地解决问题。
教学准备
实验用具(水杯),作业本,多媒体课件
教 学过程
教学环节
过程目标
教 师活动
学 生活动
教 学反思
创设
情境
体会
倒过
来想
通过创设情境使学生从简单的事情中理解倒过来思路.
1.创设学生春游乘车情境
出示从苏州去南京沿途经的城市,提问回苏州时沿途依次经过哪些城市
明确日常生活中常常应用到“倒过来想”的策略。
师生交流
观察
独立思考
自主
探索
学会
新策
略
借助学生感兴趣的实验操作和熟悉的收作业本情境来代替教材例2,使学生在亲历过的问题中受到启发,自主探索用画直观图的方法、引导学生有序思考,用“倒过来推想”的策略解决问题,在解决问题过程中体会适用新策略解决的问题特点。
一.初步理解“倒过来推想”的方法
1、出示两只盛有不等果汁的杯子,信息:两杯共装果汁400毫升,提出问题:怎样才能使两只杯中的果汁同样多?
2、配合演示从甲杯倒入乙杯40毫升使两杯同样多。然后组织学生猜一猜原来两杯果汁各有多少毫升?
3、引导学生有序思考:倒水前后两只杯子里果汁的总量有没有变化?
4、组织学生说说解决这个问题的主要策略是怎么样的?从而揭示“倒过来推想”的策略。
5、板书课题。
二.体会适用新策略解决的问题特点
1、创设学生交作业情境,出示一叠作业本,有关信息:如果又新收到12本,发下去25本,剩下总数是20本。
2、呈现箭头图,帮助学生理顺数量变化方向。
3、提问:你准备用什么策略来解决这个问题?呈现学生的列式计算方法。
4、联系倒推的两步过程启发学生思考总体变化来思考。
5、引导学生检验,用顺推的方法看剩下的是否为20本,使学生体会到用“倒过来推想”的策略解决问题是一种有效的方法和策略。
观察思考
学生交流
说说自己的想法。
尝试用画直观图和填表格的方法来更清楚展示数量关系的变化情况
推理解答,说说倒推计算思路
估测一下本数
尝试用自己方法信息,并展示出来。
说说“倒过来推想”策略
思考“发下去25本”倒过来想要怎样?“新收到12本”倒过来想要怎样?
列式
顺推检验
生活中有许多可以应用倒过去推想思路的实际问题,要引导学生从实际情况中去理解倒过去推想的思路.
实践
应用
体会
价值
通过对实际问题的探索,使学生进一步积累解决问题的'经验,增强解决问题的策略意识,获得解决问题的成功体验。帮助学生进一步掌握本课知识,形成技能,并调动他们的学习乐趣
1、组织完成练习十六的第1题
组织学生和同桌交流自己的表达方式和思路
投影学生作业过程,请学生介绍自己的方法。
2、组织完成练习十六的第2题
组织学生组内交流自己的表达方式和思路
投影学生作业
3、组织完成独立完成练一练。
提问学生思考怎么理解小军拿出画片的一半还多一张送给小明?如果你是小军你会怎么做?
出示10支粉笔,提问拿出粉笔的一半还多一支可以怎么拿?以此帮助学生理解关键句含义,明确可以分成两步理解
独立完成
仿照例1用列表方法
独立完成
仿照例2用箭头表达数量变化方向
介绍自己的方法。
理解先拿出一半,然后再拿一支。
和差问题教案篇5
?教学目标】
1.使学生加深对百分数的认识,能理解发芽率、出粉率、合格率等这些百分率的含义。
2.能用求一个数是另一个数的几分之几的方法解答求一个数是另一个数的百分之几的的百分之几的应用题,解决生活中一些简单的实际问题。
3.培养学生的知识迁移能力和数学的应用意识。
?重点难点】
1.解答求一个数是另一个数的百分之几的的百分之几的应用题。
2.对一些百分率的理解。
?教具准备】
小黑板、口算卡片。
?参考的有关数据】
稻谷出米率约72% 小麦出粉率约85% 棉子出油率约14%花生仁出油率约40% 油菜子出油率约38% 芝麻出油率约45% 蓖麻子出油率约45%
?教学过程】
第1课时
活动(一)创设情境,提出问题
1.口算比赛:(时间:1分钟)
5/6―1/2 3/10×2/9 1―1/4 4/5÷1/5 4/5÷4/3
5/8+3/4 7/12×4/7 7/8+1/4 1/5+1/3 3/4÷5
想一想,根据自己的口算情况,你能提出什么数学问题?(做对的题数占总题数的几分之几?做错的题数占总题数的几分之几?)
2.学生根据自己的口算情况口答“做对的题数占总题数的几分之几?做错的题数占总题数的几分之几?”
3.提出问题:能否将“做对的题数占总题数的几分之几”的分数应用题改成一道百分数应用题呢?
(校对并让学生说说自己的口算情况,错题数占总题数的百分之几”)
活动(二)相互合作,探究问题
初步感知
1.学生尝试解答各自的“做对的题数占总题数的百分之几”和“做错的题数占总题数的百分之几”的问题。
2.小结:“求一个数是另一个数的百分之几的百分数应用题”与“求一个数是另一个数的几分之几的分数应用题”解法相同,关键是找准单位“1”,所不同的是,“求一个数是另一个数的百分之几的百分数应用题”计算的结果要化成百分数。
共同探讨
1.师:百分数在日常生活、工作中应用很广泛,如前面说到的你们在口算比赛中,各自“做对的题数占总题数的百分之几”这是你在这次口算比赛中的正确率,“做错的题数占总题数的百分之几”就是错误率。像这些正确率、错误率等我们通常称作“百分率”。你能举一些我们日常生活中的百分率的例子吗?
2.学生举一些日常生活中的百分率的例子,举例的同时要让学生说说他所举百分率的意义。
板书学生所举的百分率及其含义。如:
合格的产品数 发芽的个数
产品的合格率= ────────×100% 发芽率= ───────×100%
产品总数 种子的总数
3.尝试解答例题:
(1)出示课本例1和例2的条件:
例1六年级有学生160人,已达到《国家体育锻炼标准》的有120人, ?
例2某县种子推广站,用300粒玉米种子作发芽实验,结果发芽的种子有288粒。 ?
(2)完成第113页的“做一做”
活动(三)运用知识,解决问题
1.口答:
(1)2是5的百分之几?5是2的百分之几?
(2)用 1000千克花生仁榨出花生油380千克,说出求花生仁出油率的公式,并算出花生仁的出油率。
2.判断:
(1)学校上学期种的105棵树苗现在全部成活,这批树苗的成活率是105%。
(2)六年级共98名学生,今天全部到校,六年级今天的学生出勤率是98%。
(3)25克盐放入100克水中,盐水的含盐率是25%。
3.课堂作业:
1.我国鸟类种数繁多,约有1166种。全世界鸟类约有8590种。 ?
2、根据我班同学的情况,先编一道百分数应用题,在小组内交流,然后解答。
活动(四)全课总结
1.学生谈谈学习本课后有什么收获,说说解答一个数是另一个数的百分之几的百分数应用题的关键是什么?方法是怎样的?这类应用题与求一个数是另一个数的几分之几的分数应用题有什么关系?
2.学生谈谈今天所学的知识在我们的日常生活中有什么用?
活动(五)补充练习
1.判断题。
①五年级98个同学,全部达到体育锻炼标准,达标率为98%。
②今天一车间102个工人全部上班,今天的出勤率是102%。
③甲工人加工103个零件,有100个合格,合格率是100%。
2.应用题。
①六年级一班有学生50人,今天出席48人.求六年级一班今天的出勤率。
②在一次数学测验中,六年级一班同学一共做了400个题,结果有错误的题16个,求错误率。
3.作业:结合练习二十九第6题进行课外调查。
?教学反思】
创造性地使用了教材,使乏味的数学变得生动,鲜活,有意义。。注重了学习方式的多样化,密切了数学与生活的联系。学习效果很好。
和差问题教案篇6
学习目标:
1.探索具体问题中的数量关系和变化规律,能用线形示意图和柱状示意图分析问题
2.进一步培养学生观察、思考、分析问题、解决问题的能力,渗透建模的数学思想。
3.感受数学与生活的紧密联系,体会数学的价值,激发学生学习数学的兴趣。
学习难点:
分析与确定问题中的等量关系,线形示意图和柱状示意图分析问题。
教学过程:
一、创设情境,引入新课
问题一:
一个书包进价为60元,打八折销售后仍获利20元,这个书包原定价为_______元
二、合作质疑,探索新知
问题二:一件夹克衫先按成本提高50%标价,再以8折(标价的80%)出售,结果获利28元,这件夹克衫的成本是多少元?
问题三:商店对某种商品调价,按原价的8折出售,此时商品的利润率是10%,此商品的进价为1600元,商品的.原价是多少?
三、自主归纳,形成方法
如何利用线形示意图和柱状示意图分析实际问题
巩固练习:
1、某商品的进价为80元,销售价为100元,则该商品的利润为元,利润率为;
2.小明的父亲到银行存入20000元人民币,存期一年,年利率为1,98%,到期应交纳所获得利息的20%的利息税,那么小明的父亲存款到期交利息税后共得款
3.一种商品的买入单价为1500元,如果出售一件商品要获得利润是卖出单价的15%,那么这种商品的卖出单价应定多少元?(精确到1元)
4.商店对某种商品调价,按原价的8折出售,此时商品的利润率是10%,此商品的进价为1600元,商品的原价是多少?
四、反思设计,分组活动
某人把若干元按三年期的定期储蓄存入银行,假设年利率为为5%,到期支取时扣除所得税实得利息为720元(银行存款所得税的税率为20%,所得税金额=所得利息×20%),求存入银行的本金是多少?
五、发展能力,拓展延伸
购买一台售价为10225元的家用电器,分两期付款,且每期付款相等,第一期款在购买时付清,经一年后付第二期款,这样就付清了全部售价和第一期付款后欠款部分的利息,如果年利率是4.5%,那么每期付款是多少元?
六、课堂小结,感悟收获
通过以上问题的解决,你觉得怎样如何利用线形示意图和柱状示意图分析问题?
【课后作业】
1.一件商品按成本价提高20%标价,然后打九折出售,售价为270元.这种商品的成本价是多少?
2.某种家具的标价为132元,按9折出售,可获利10%(相对于进货价).求这种家具的进货价.
3.一件夹克杉先按成本提高40%标价,再以八折(标价的70%)出售,结果获利38元,这件夹克杉的成本是多少元?
4.店主老王采购了一批灯管,每根13元,在运输过程中不小心损坏了12根,出售灯管的单价是15元,售完后共获利润1020元,问一共购进多少根灯管?
5.某商店有两种不同的mp3都卖了168元,以成本价计算,其中一个赢利20%,另一个亏本20%,则这次出售中商店是赚了,还是赔了?
6.服装销售中只要高出进价20%就可以盈利,但老板们常以50%~100%标价,假如你准备买一件标价200元的服装,可以在什么范围内还价?
和差问题教案篇7
教学目标
(一)知识与技能
初步培养学生在具体的生活情境中收集信息,提出问题并解决问题的能力。
(二)、过程与方法
通过学生的观察、探索等学习活动,使学生经历从生活数学到数学问题的抽象过程,感受知识的现实性。
(三)、情感态度与价值观
在学习过程中,通过解决具体问题,培养学生初步的应用意识和热爱数学的良好情感。
教学重点
引导学生结合商和余数在实际情境中的含义正确写出相应的单位名称。
教学难点
运用恰当的方法和策略解决实际问题。
教学准备
教师:课件。
学生:表格。
教学过程
一、 激趣导入,引出课题。
教师:同学们,我们先来猜做个游戏好不好?
出示课件:想一想,第十六个图形是什么样的?第35个呢?第98个呢?
教师:咱们运用有余数的除法就可以解决这个问题。
教师:同学们真厉害,猜得非常准确,其实这就是用有余数的除法解决实际问题。
教师:这节课要学习的内容就是用有余数的除法解决问题。
板书课题。
二、尝试问题,自主学习。
(1)显示例4的主题图,让学生观察。
教师:在同学们的体育活动当中也会出现有余数的除法的实际问题,大家请看!
提问:从这幅图中你看到了什么?
你能根据图中的有效信息提出数学问题吗?
生1:有32个同学
生2:老师要求每6人一组
生3:可以分几组,还多几人?
(课件同步出现:可以分几组,还多几人?)
师: 你能帮老师解决这个数学问题吗?
师:请同学们用自己的方法算一算,开始吧。
(2)自主学习,尝试解决问题。
教师:小帮手们动作可真快!请两位小帮手给大伙儿说说你的计算方法。
师:哪位同学给大家说说自己的'算法?
教师根据学生的口述板书,
如果有的学生没有写出单位,这时提问:
师:这里的商5表示什么意思呢?余数2呢?那单位各是什么呢?(根据商和余数的单位提问:
教师:你们知道这里的商5表示什么意思吗?余数2呢?
生:商表示可以分5组,余数表示还多2人。)
(3)出示练习十三的第2题。
师:下面这道有关跳强绳的问题怎么解决呢?看谁做得又对又快!
19-8=11(米) 112=5(根)1(米)
答:可以做5根短跳绳,还剩1米。
三、探究合作,解决问题。
教师:同学们,当你的练习本用完后,你一般会怎么处理它呢?
生1:把它扔了。
生2:卖给废品回收站。师:你可真会节约再利用资源。
教师:这些纸是可以重复利用的。
播放课件。
和差问题教案篇8
教学目标:
1、让学生经历解决问题的过程,学会用乘法两步计算解决问题。
2、通过解决具体问题,让学生获得一些用乘法计算解决问题的活动经验,感受数学在日常生活中的作用。
教学重、难点:
使学生学会从实际生活中发现问题、提出问题,并运用所学知识解决问题。
教具准备:
运动会广播操表演录像或幻灯片。
教学过程:
一、复习铺垫
下面老师有几个问题想请大家帮忙解决。
接着,口述下面的问题。
二(1)班一些学生为布置教室做纸花。每两位小朋友一小组,每位小朋友做3朵花,8个小组一共做了多少朵花?
待学生解决问题后,请两、三名学生说一说解决问题的过程和结果。
教师评价解决问题的方法,并鼓励学生探讨解决新的问题。
二、自主探究,解决新问题
1.创造情境,引出问题。
展示运动会开幕式上广播操表演情境,吸引学生“进场”。接着,定格在表演广播操的一个方阵上(与例1一致),由小精灵提出问题(画外音)。
2.探讨解决问题的方法。
请学生独立观察画面,收集解决问题的信息数据,思考解决问题的方法。允许遇
师生活动
到困难的学生与伙伴交流意见。
3.组织交流。
请学生说一说解决问题的过程和结果。在“说”的过程中,加深学生对解决问题的步骤和方法的理解,并获得用数学知识解决问题的成功体验。
三、自主解决问题。
1.请学生独立解决教科书第99页“做一做”中的问题。
注意留给学生充足的时间。
1.组织交流。
鼓励学生展示自己解决问题的方法。
由于学生观察事物的角度不同,收集到的数学信息不同,思考探索的解决方法也就不同。解决“一共有多少个?”的方法可能会出现多种。例如,
①5×6×8②5×6×(5+3)③5×6×7+5×6
④5×6×7+30⑤30×8⑥30×5+30×3
学生说得有道理,答案正确,就给予肯定和鼓励,激发学生探索的欲望,增强学生学好数学的信心。
四、练习
1.请学生解决练习二十三中第1、3、4题中的问题。
(1)要求学生独立完成。可以不受习题顺序的限制,想先解决哪个问题,就先解决那一个。
解决问题时,如果有不理解的词语,可以问同学和老师。
(2)适时鼓励学生,寻找不同的方法解决问题。
(3)组织交流。
①在小组内交流自己解决问题的方法。
让每个学生都参与表达解决问题过程和结果的学习活动。
②各组推出代表向全班学生展示解决问题的方法。
2.请学生联系身边的事,提出需要用乘法两步计算解决的问题,并解决问题。
五、课堂总结(略)