分数除法一教案优质5篇

时间:2023-12-31 作者:Surplus

教案能够帮助教师更好地组织课堂活动,提高学生的参与度和学习效果,制定好教案使教师更加注重学生的个性化需求,提供个性化的学习支持和指导,下面是团团范文网 小编为您分享的分数除法一教案优质5篇,感谢您的参阅。

分数除法一教案优质5篇

分数除法一教案篇1

教学目标

1.结合具体情境,掌握分数四则混合运算的顺序,能正确进行计算。

2.能运用所学知识解决简单的实际问题,提高综合解题的能力。

3.培养学生认真审题、准确计算的好习惯。

重点难点

重点:掌握分数四则混合运算的顺序。

难点:正确计算分数四则混合运算。

教具学具

投影仪。

教学过程

一、导入

1.笔算下面各题。

24÷4+16×5-37 46+50×[(900-90)÷9]

提问:整数四则混合运算的顺序是什么?

2.计算下面各题。

二、教学实施

(5)分析运算顺序。

提问:这两个算式里分别含有几级运算?应该先算什么,再算什么?

指名让学生回答,并说明运算顺序。全班同学各自在练习本上计算,做完后集体订正。

2.巩固练习。

完成教材第33页“做一做”。

学生说明运算顺序。

3.变式练习。

学生可以先讨论怎样计算,再明确顺序进行计算。

老师说明:一般情况下,在分数、小数混合的式子里,通常把小数化成分数进行计算。

三、课堂作业新设计

1.填空。

四、思维训练参考答案

思维训练

1.d 2.略

教材习题

教材第33页做一做

板书设计

分数四则混合运算

运算顺序

(1)不含括号的分数混合运算的运算顺序:在一个分数混合运算算式里,如果只

含有同一级运算,按照从左到右的顺序计算;如果含有两级运算,先算第二

级运算,再算第一级运算。

(2)有括号的分数混合运算的运算顺序:在一个分数混合运算的算式里,如果既

有小括号又有中括号,要先算小括号里面的,再算中括号里面的。

备课参考教材与学情分析

例3以吃药片为题材,通过解决问题,引出涉及分数除法的混合运算,使学生看到已经掌握的混合运算顺序,同样适用于分数运算。例3下面的“做一做”是需要用到分数乘除混合运算解决的实际问题。

课堂设计说明

1.加强意义理解,加强分数除法与整数除法、分数乘法的联系,加强复习,使学生利用已有知识进行自主探索。

2.通过解决问题,理解分数混合运算的顺序。

教学例3时,可以先复习以前学过的四则混合运算顺序。出示例题后,可以让学生先说出已知条件与问题,再说说自己解决这个问题的思路。可以从问题入手想,也可以从条件出发思考。列出综合算式后,让学生说说运算顺序,再进行计算。

3.注重直观操作,渗透数学的思想和学习方法。

直观操作——主要体现在计算方法的理解过程中。在例题教学和习题练习中,关注学困生的情况,需要多次演示,强化数量关系的理解(已知一个数的几分之几是多少,求这个数)。

分数除法一教案篇2

教学目标:使学生进一步理解分数与除法的关系,学会根据分数与除法的关系,把低级单位的名数改写成高级单位的名数以及解答"求一个数是另一个数的几分之几"的应用题。

教学重点:名数之间的'互化。

教学难点:名数之间的互化的实质理解。

教学课型:新授课

教具准备:课件

教学过程:

一,铺垫复习,导入新知

1,用分数表示下面各式的商。[课件1]

5÷6 14÷25 12÷12 18÷35

2,在括号里填上适当的数或字母。[课件2]

12÷35=( )/( ) ( )÷( )=4/7

( )÷( )=a/b 8÷( )=( )/9

( )÷17=7/( ) 1÷( )=( )/d

3,把5个饼分给9孩子吃,每个孩子分得多少个 [课件3]

4,小新家养鸡30只,养鸭10只。养的鸡是鸭的几倍

5,填空。[课件4]

30分米=( )米 180分=( )小时

二,变式类推,深化理解

1,教学p91 。例4: (1)3分米是几分之几米

(2)17分是几分之几时

思考:a,这两题与复习题有什么区别 有什么相同

b,第(1)题要把分米数改写成米数应该怎么办 怎样计算

板书: 3÷10=3/10(米)

c,第(2)小题是要将什么改写成什么 怎样求得

板书: 17÷60=17/60(时)

※ p91 。做一做

2,教学p92 。例5: 小新家养鹅7只,养鸭10只。养的鹅是鸭的几分之几

(1)提问:a,用谁作标准 该怎样计算

b,与复习题对比,有哪些不同点和相同点

(2)归纳。

求一个数是另一个数的几倍与求一个数是另一个数的几分之几,都用除法计算,除数都作标准数,得到的商都表示两个数之间的关系,都不能写单位名称。

※ p92 。做一做

习前提问:说说用什么作标准数

三,加强练习,深化概念

1,p93 。4

要求说说题目的思路和单位之间的进率。

2,p93 。6

提问:这两个问题中的标准量相同吗 请说说标准量分别是什么

3,p93 。7

四,全课小结,抽象概括

1,本节课所学的两个内容分别是什么

2,你还有问题要问吗

五,家作。

p93 。5,8

分数除法一教案篇3

一、复习

1、同学们,你能口算95930÷362等于多少吗?为什么?(学生回答数据太大,不好口算)

如果已知265×362=95930,你能说出答案吗?为什么?

(引导学生说出整数除法的意义:已知两个因数的积和其中一个因数,求另一个因数的运算)

二、教学分数除法的意义

1、2/7 ×( )=1,括号内填几分之几?为什么?

2、根据这道乘法算式,你能说两道除法算式吗?根据是什么?

(引导说出分数除法的意义)

3、完成p25做一做

三、分数除以整数的计算法则

1、这节课我们学习分数除法

2、同学们已经了解分数除法的意义,你还想学习关于分数除法的什么知识?

3、事实上,有一些分数除法同学们是会计算的。下面口算几题:

3/8÷3/8 0÷4/9 1÷2/5 3/4÷1

你是根据什么知识口算这几道题的?

4、上面这四道题是一些特殊的分数除法,我们继续学习其他的分数除法。

出示例题:一张纸的 平均分成3份,每份是这张纸的几分之几?(图略)

怎样列式? 你能根据图说出算式的结果吗?怎样证明这个结果是正确的呢?(引导学生从多个角度证明结果的正确性 )

根据学生的回答板书:

3/4÷3 = 3÷34 = 1/4

你能归纳这种分数除以整数的计算方法吗?

5、用这种方法口算:

3/4÷3 4/9÷4 10/9÷5 6/7÷2

6、质疑

你认为这种计算方法适用于所有的分数除以整数吗?能举例说明吗?

7、小组讨论,自主学习分数除以整数

用学生所举的例子作为教学例题(例如 1/5÷3),在数学学习过程中,我们经常遇到新问题,这时需要考虑如何将新问题转化为已学过的旧知。现在看一看,我们已经掌握了哪些分数除法的知识:

(1)分数除以整数,用分子除以整数的商作分子,分母不变。

(2) 1除以一个分数,结果是该分数的倒数。

(3)一个分数除以1,结果是原分数。

你能将1/5 ÷3转化成已经掌握的分数除法吗?小组讨论并将讨论结果记录下来。

8、小组汇报

(1)1/5 ÷3=3/15 ÷3=1/15

(2)1/5 ÷3=(1/5 ×5)÷(3×5)=1÷15=

(3)1/5 ÷3=(1/5 ×1/3 )÷(3×1/3 )= 1/5×1/3 ÷1=1/15

(4) ……

你能归纳自己小组讨论的分数除以整数的计算方法吗?

(1)先将分子和分母同时扩大相同的倍数,使除数能整除分子,再用前面的方法计算。

(2)利用商不变性质,将分数除以整数转化成1除以一个数,再计算。

(3)利用商不变性质,将分数除以整数转化成一个分数除以1,再计算。

(4)……

9、观察第三种方法:

1/5 ÷3=(1/5 ×1/3 )÷(3×1/3 )= 1/5×1/3 ÷1=1/15

这个计算过程还可以更简洁些,你能看出来吗?

化简得: 1/5 ÷3=( 1/5×1/3 )÷(3×1/3 )= 1/5×1/3 =1/15

观察 1/5÷3== 1/5×1/3 ,你能说一说吗?

(引导学生说出分数除以整数,等于分数乘整数的倒数)

10、计算方法的优化

刚才小组讨论时,每组用一种方法计算了 1/5÷3,现在你能用其他的方法计算一下吗?

学生计算后提问:你喜欢那种方法?为什么?

总结分数除以整数的计算法则:

分数除以整数(零除外),等于分数乘整数的倒数。

11、对其他的方法,你又有什么要说的吗?

(引导说出当分子能被整数整除时,可以直接用分子除以整数的商作分子,分母不变的方法。培养学生从不同角度观察、分析问题)

四、课堂练习

1、计算下列各题

2/3÷3 2/11÷2 3/8÷6 5/4÷2

2、练习七第1题

3、讨论题

1/3÷a和 1/a÷3(a≠0),那道题的结果大?为什么?

分数除法一教案篇4

【学习目标】

1、能利用计算法则,正确、迅速地进行分数除法的计算。

2、培养自己的语言表达能力和抽象概括能力。

3、养成良好的计算习惯。

【学习重难点】

1、重点是抽象概括出分数除法的计算法则。

2、难点是利用法则正确、迅速地进行计算,并能解决一些实际问题。

【学习过程】

一、复习

1、列式,说清数量关系。

小明2小时走了6 km,平均每小时走多少千米?____________________________

速度=路程÷时间

2、计算:151×4 ×3 ×2 ×6 971215

8352÷4 ÷3 ÷2 ÷6 9765

二、探索新知

1、阅读例题3主题图及题目,要“比较谁走的快”可以比较他们的什么?如何列式?

2、探究2÷

(1)“2的算法 32小时走了2 km,估一估1小时走多少千米? 3

(2) 动手画线段图表示已知条件与问题的关系。

1小时走的路程,再将线段平均分成3份,其中2份

表示的就是2小时走的路程。 3

(3) 结合线段图,思考:要求小明的速度,第一步可以先算什么?第二步再算什么?

2要怎样计算?它把除法转化成什么?怎样转化? 3

55553、计算例3第二个算式÷,想一想÷可以转化成什么? 612612(4) 结合解题思路,思考2÷

4、通过上面的2道计算题,你发现了什么?你会用自己的方式表示下你发现的规律吗?

______________________________________________________________

三、知识应用:独立完成p31“做一做”的第1、2题。(组长检查核对,提出质疑。)

四、层级训练:巩固训练:练习八第4、5、6题;拓展提高:练习八第7、8、9题。

五、总结梳理: 回顾本节课的学习,说一说你有哪些收获?

学习心得__________( a.我很棒,成功了; b.我的收获很大,但仍需努力。) 自我展示台:(写出你的发现或见解)

分数除法一教案篇5

教学内容:

教材第29~30页“分数除法(三)”。

教学目标:

1.能用方程解决简单的有关分数的实际问题,初步体会方程是解决实际问题的重要模型。

2.在解方程中,巩固分数除法的计算方法。

教学重难点:

1.能够体会方程是解决实际问题的重要模型。

2.能够用方程解决实际问题。

教学过程:

一、创设情景激趣揭题

1.出示课外活动情况图问:从图中,你们能获得哪些数学信息呢?

2.引入并板书课题。

二、扶放结合探究新知

1.根据这些数学信息,你能提出哪些数学问题?

2.引导学生逐一解答提出的问题。

3.重点引导:跳绳的`有6人,是操场上参加总人数的2/9,操场上有多少人?该怎样解答?

4.引导观察,找出有什么相同点和不同点?

三、反馈矫正落实双基

1.指导完成p29的试一试的1,2题。

2.你能根据方程

x×1/5=30

编一道应用题吗?

3.请你想一个问题情景,遍一道分数应用题。

四、小结评价布置预习

1.引导小结

通过本节课的学习你有哪些收获?

2.布置预习

整理前面所学知识。

板书设计:

分数除法(三)

跳绳的小朋友有6人,是操场上参加活动总人数的2/9,操场上有多少人参加活动?

参加活动总人数×2/9=跳绳的人数

解:设操场有x人参加活动。